• Title/Summary/Keyword: Aluminum oxides

Search Result 68, Processing Time 0.03 seconds

Preparation and Analysis of High Functional Silicone Hydrogel Lens Containing Metal Oxide Nanoparticles by Photopolymerizaion

  • Heo, Ji-Won;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.193-199
    • /
    • 2022
  • In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1 % to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.

Adsorption Characteristics of Arsenic on Composite Adsorbents using Recycled Aluminium Oxides and $TiO_2$ (재생 알루미늄 산화물과 $TiO_2$의 복합성형체를 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.197-201
    • /
    • 2012
  • The objective of this study was to evaluate the removal efficiency of arsenite and arsenate using composite adsorbents with various mixing ratio of recycled aluminum oxides and $TiO_2$. From batch adsorption experiments, while the removal of As(III) was almost same with 4 different composite samples in the entire pH range, the removal of As(V) was substantially increased as the weight ratio of $TiO_2$ in composite samples reduced and showed anionic adsorption characteristics. Both adsorption of As (III) and As(V) on composite samples followed pseudo-second-order adsorption equation and C-3 showed faster reaction rate for the removal of arsenic. From the adsorption isotherm experiments, Langmuir isotherm explained well and the maximum adsorption capacities of arsenic were obtained with C-1.

High Temperature Oxidation Behavior and Surface Defect in Fe-25Mn-1.5Al-0.5C Steel (Fe-25Mn-1.5Al-0.5C강의 고온 산화 거동과 표면 결함)

  • Park, Shin Hwa;Hong, Soon Taik;Kim, Tai Wung;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.158-162
    • /
    • 2000
  • The high temperature oxidation behavior and the surface defect in Fe-25Mn-1.5A1-0.5C steel was investigated by XRD (X-ray Diffractin) and electron microscopy. The intra- and inter-granular oxides were formed by the selective oxidation of manganese and aluminum, which were identified to MnAl2O4 phase. Aluminum nitride (AlN) was formed in front of these oxides. The ${\gamma}$-matrix was transformed to ${\alpha}$- and ${\varepsilon}$- phases by the selective oxidation of manganese. The surface defect, micro-scab was induced by the difference of the high temperature ductility between the matrix and the inter-granular oxide.

  • PDF

Effects of Hydration Treatments on the Phase Transition of Anodic Aluminum Oxide Layers (알루미늄 양극산화 피막의 상전이에 미치는 수화처리의 영향)

  • Joo, E.K.;Kim, S.S.;Oh, H.J.;Cho, S.H.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.540-544
    • /
    • 2002
  • Hydration treatments were performed on the pure aluminum substrate at $100^{\circ}C$ followed by anodizing and heat treatments on the layers. The transformation behaviors of the oxide layers according to the hydration treatment were studied using TEM, XRD, RBS etc. Above $90^{\circ}C$ the hydrous oxide film could be formed, which were turned out to be hydrous oxides(AlOOH $nH_2$O). The anodization on the hydrous oxide film was more effective for the transition of amorphous anodic oxides to the crystalline $\Upsilon-Al_2$ $O_3$ comparing with the case for anodizing on the aluminum substrate without hydration treatment And additional heat treatments were also helpful for the acceleration of the transformation of the hydrous oxide to $\Upsilon-Al_2$ $O_3$. During the heat treatment the interface between $\Upsilon-Al_2$ $O_3$and the hydrous oxide layers migrated to the outer side of hydrous layer.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

질화물반도체 박막 성장용 나노 다공성 사파이어 기판 제작공정

  • Baek, Ha-Bong;Choe, Jae-Ho;Kim, Geun-Ju
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.234-237
    • /
    • 2007
  • We fabricated nano-structures of the anodic aluminum oxides on sapphire substrates. Two processes of nano-structured sapphire surface have present: the one is the template mask and the other is the anodic oxidized aluminum deposited on sapphire substrate. The formation of nano-structures has investigated by FE-SEM measurement. The etched surface by the template showed periodic lattice but the deposited surface showed the randomly distributed phase of nanoholes instead of the periodic lattice.

  • PDF

Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route (분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조)

  • Jeon, Jonggyu;Kim, Jungjoon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.203-209
    • /
    • 2020
  • The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

Fabrication of Aluminum Foams for High Profit Recycling of Aluminum Can Scraps (알루미늄 캔 스크랩의 고품위 재활용을 위한 발포금속의 제조)

  • Ha, Won;Kim, Shae-Kwang;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.203-208
    • /
    • 2005
  • The main emphasis of this study is to optimize the process variables for manufacturing aluminum foam materials by direct foaming of remelted aluminum scraps. Aluminum foams were fabricated from two different raw materials, pure aluminum and used beverage cans. For both cases, $TiH_{2}$ was used as a foaming agent. Calcium was added as a thickener for the foaming of pure aluminum and no thickener was added for that of used beverage Cans because the pre-existing oxides of the used beverage cans are used as a thickener. Calcium and $TiH_{2}$ content varies from 0.5wt.% to 2.0wt.% and from 0.5wt.% to 1.5wt.%, respectively. The processing conditions, such as the effect of calcium on the melt viscosity, foaming temperature, and the optimum amount of the foaming agent with regard to the melt viscosity were discussed.

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F.;Shahidi, M.;Foroughi, M.M.;Kazemipour, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.148-158
    • /
    • 2019
  • The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.