• Title/Summary/Keyword: Aluminum alloys

Search Result 644, Processing Time 0.029 seconds

Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution (항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도)

  • Choi, Heesoo;Lee, Daeun;Ahn, Soojin;Lee, Cheoljoo;Kim, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.738-747
    • /
    • 2018
  • For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024-T62, 2124-T851 and 2050-T84 alloys in a 3.5 % NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5 % NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of $10^{-6}/sec$ in a 3.5 % NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5 % NaCl solution is discussed based on fractographic and micrographic observations.

Environmentally Conscious High Speed Machining Characteristics of Aluminium Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • 황인옥;강익수;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-99
    • /
    • 2003
  • Recently, environmental pollution has become a significant problem in industry and many researches have been investigated in order to preserve the environment. Environmentally conscious machining and technology have more and more important position in machining process. The cutting fluid has greatly bad influence on the environment in the milling process. This research is experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the machinability surface roughness and chip appearance was investigated in the machining of aluminum alloys applied dry machining and using cutting fluid, oil mist.

  • PDF

Surface treatment of mold components for quality improvement (금형부품의 품질향상을 위한 표면처리에 관한 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Gang, Dong-Myung
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.43-47
    • /
    • 2008
  • Micro Electrochemical Machining(Micro ECM) has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro ECM for aluminum alloy.

  • PDF

A development of optimizing tools for friction stir welding with 2mm aluminum alloy using milling machine (밀링을 이용한 A1합금 용접을 위한 최적공구형상 및 치수개발에 관한 연구 -마찰용접법에 의하여-)

  • 김인주
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.110-114
    • /
    • 2000
  • This paper shows the possibility of performing the friction stir welding and the development of optimizing tools for FSW with 2mm thick plate of aluminum alloys using milling machine. This research can be reported on achieving above 90% of the tensile strength in 1050 aluminum alloys friction stir welded in the room temperature. This welding process is very simple and does not require filler metal eliminates straightening of the workpiece. It is currently attracting interest from different industries working with aluminum alloys.

  • PDF

Effect of Machining Characteristics Aluminium Alloy added Composition Elements (알루미늄 합금의 성분원소가 절삭 특성에 미치는 영향)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.857-860
    • /
    • 1997
  • The purpose of this research was to study the influence of machining characteristics for aluminum alloys. The effect of metallic microstructural variables on the measures of machinability of aluminum alloys has no been adequately investigated. Machining Characteristics are influenced significantly by mechanical characteristics, composition and structure of material etcs. For improvement of machining characteristics, various studies are reported. In this paper, composition elements add to aluminum alloys within the limit of sustaining mechanical characteristics of metallic material. We have analyzed dynamic characteristics of cutting resistance, tensile strength value, hardness value etcs.

  • PDF

Researches in Corrosion Resistance of Friction Stir Welded Aluminum alloys (마찰교반접합된 알루미늄 합금의 내식 특성에 관한 연구 동향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloys have been considered for substantial use in these industries. This ensues from their attractive strength to weight ratio, superb formability, apposite weldability and acceptable corrosion resistance. Depending on the specific application, corrosion behavior is a significant factor of a welded joint. In this study, recent researches in the view of corrosion resistance of friction stir welded aluminum alloys are briefly reviewed.

Aluminum alloys and their joining methods (알루미늄 합금과 그 접합 방법)

  • Jung, Do-hyun;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.9-17
    • /
    • 2018
  • Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.

Properties and Casting Characteristics of Al-Zn-Fe-Si Alloys (Al-Zn-Fe-Si 합금의 물성 및 주조특성)

  • Yun, Ho-Seob;Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Although aluminum-silicon based commercial casting alloys have been used in applications that demand high electrical or thermal conductivity, new aluminum casting alloys that possess higher conductivities are currently required for advanced applications. Therefore, there is much research into the development of new high conductivity aluminum casting alloys that contain lower amounts of or no silicon. In this research, the properties and casting characteristics of Al-Zn-Fe-Si alloys with various Fe and Si contents were investigated. Two types of AlFeSi phases were formed depending on the Fe and Si contents. As the silicon content increased, the tensile strength of the Al-Zn-Fe-Si alloy increased slightly, while the electrical conductivity decreased slightly. It was also observed that both the fluidity and hot cracking susceptibility of the investigated alloys were closely related to the formation of the AlFeSi phases.

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review (초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향)

  • Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.

A Study on the Compressive Properties of Thixo-Extruded 7075 Aluminum Alloy (7075 알루미늄 합금 반용융 압출재의 압축특성)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.37 no.2
    • /
    • pp.38-44
    • /
    • 2017
  • Given that the conventional extrusion of high-strength Al alloys such as 7075 aluminum alloys is difficult due to their very low extrudability as compared to that of 6061 aluminum alloys, thixo-extrusion can be used to obtain a high-strength material easily at a lower extrusion pressure as compared to conventional extrusion. In this study, hot- and thixo-extruded 7075 aluminum alloys are prepared by a vertical forward extrusion process and their microstructures, hardness levels, and compressive properties are investigated. Hot-extruded alloy bars are assessed to obtain a microstructure elongated in the extrusion direction, whereas with thixo-extruded alloy bars, it was possible to obtain a microstructure having fine and equiaxed grains by dynamic recrystallization. The resulting isotropy and improved formability at the hot deformation temperature of the thixo-extruded alloy were attributed to the fine and equiaxed grains formed by the thixo-extrusion process.