Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.12.738

Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution  

Choi, Heesoo (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Lee, Daeun (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Ahn, Soojin (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Lee, Cheoljoo (Structural Analysis Team, Korea Aerospace Industries, LTD.)
Kim, Sangshik (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.28, no.12, 2018 , pp. 738-747 More about this Journal
Abstract
For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024-T62, 2124-T851 and 2050-T84 alloys in a 3.5 % NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5 % NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of $10^{-6}/sec$ in a 3.5 % NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5 % NaCl solution is discussed based on fractographic and micrographic observations.
Keywords
stress corrosion cracking; 2xxx series aluminum alloy; 3.5 % NaCl solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. J. Kim, J. K. Kwon, Y. I. Jeong, N. S. Woo and S. S. Kim, Met. Mater. Int., 19, 19 (2013).   DOI
2 Y. C. Lin, Y. C. Xia, X. M. Chen and M. S. Chen, Comput. Mater. Sci., 50, 227 (2010).   DOI
3 Ph. Lequeu, K. P. Smith and A. Danie'lou, J. Mater. Eng. Perform., 19, 841 (2010).   DOI
4 E. A. Starke, Jr, and J. T. Staley, Progr. Aero. Sci., 32, 131 (1996).   DOI
5 H. Y. Li, Y. Tang, Z. D. Zeng and F. Zheng, Trans. Nonferrous Met. Soc. China, 18, 778 (2008).   DOI
6 R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie and G. L. Zender, J. Electrochem. Soc., 144, 2621 (1997).   DOI
7 C. Kumai, J. Kusinski, G. Thomas and T. M. Devine, Corrosion, 45, 294 (1969).
8 D. McNaughtan, M. Worsfold and M. J. Robinson, Corros. Sci., 45, 2377 (2003).   DOI
9 K. Urushino and K. Sugimoto, Corros. Sci., 19, 225 (1979).   DOI
10 S. Maitra, Corrosion, 37, 98 (1981).   DOI
11 D. Najjar, T. Magnin and T. J. Warner, Mater. Sci. Eng., A, 238, 293 (1997).   DOI
12 J. Woodtli and R. Kieselbach, Eng. Fail. Anal., 7, 427 (2000).   DOI
13 M. O. Speidel, Metall. Mater. Trans. A, 6, 631 (1975).
14 J. Tao, Pierre et Marie Curie University, p. 9, Paris (2016).
15 T. D. Burleigh, Corrosion, 47, 89 (1991).   DOI
16 H. J. Lee, Y. J. Kim, Y. I. Jeong and S. S. Kim, Corros. Sci., 55, 10 (2012).   DOI
17 T. C. Tsai and T. H. Chuang, Mater. Sci. Eng., A, 225, 135 (1997).   DOI
18 G. S. Chen, M. Gao and R. P. Wei, Corrosion, 52, 8 (1996).   DOI
19 R. S. Rana, R. Purohit and S. Das, Int. J. Sci. Res. Publ., 2, 1 (2012).
20 N. J. Henry Holroyd and G. M. Scamans, Metall. Mater. Trans. A, 44, 1230 (2013).   DOI
21 K. Rajan, W. Wallace and J. C. Beddoes, J. Mater. Sci., 17, 2817 (1982).   DOI
22 T. Warner, Mater. Sci. Forum., 519-521, 1271 (2006).   DOI
23 G. S. Chen, M. Gao, R. P. Wei, Corros. Sci., 52, 8 (1996).   DOI
24 J. A. Taylor, Queensland University, p. 4, Brisbane (2004).
25 M. Zeren, J. Mater. Process. Tech., 169, 292 (2005).   DOI
26 A. A. El-Aty, Y. Xu, X. Z. Guo, S. H. Zhang, Y. Ma and D. Y. Chen, J. Adv. Res., 10, 49 (2018).   DOI
27 S. J. Ketcham, Corros. Sci., 7, 305 (1967).   DOI
28 X. X. Zhang, X. R. Zhou, T. Hashimoto, B. Liu, C. Luo, Z. H. Sun, Z. H. Tang, F. Lu and Y. L. Ma, Corros. Sci., 132, 1 (2018).   DOI
29 H. J. Liu, H. Fujii, M. Maeda and K. Nogi, J. Mater. Process. Tech., 142, 692 (2003).   DOI
30 T. Dursun and C. Soutis, Mater. Des., 56, 862 (2014).   DOI
31 A. A. Tiamuyu, R. Basu, A. G. Odeshi and J. A. Szpunar, Mater. Sci. Eng., A, 636, 379 (2015).   DOI
32 C. J. Lee, S. S. Park, S. J. Sin and Y. I. Jung, Aircraft Structure Design In Practice, p.47, G-WORLD, Korea (2017).
33 V. Guillaumin and G. Mankowski, Corros. Sci., 41, 421 (1999).
34 S. Mahmoud and K. Lease, Eng. Fract. Mech., 70, 443 (2003).   DOI