• Title/Summary/Keyword: Aluminum Extrusion

Search Result 196, Processing Time 0.024 seconds

Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion (직접압출에 의한 Cu-Al 층상 복합재료 봉의 계면접합)

  • 김희남;윤여권;강원영;박성훈;이승평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • Composite material consists of more than two materials and make various kinds of composite materials by combining different single materials. Copper clad aluminum composite material is composed of Al and Cu, and it has already been put to practical use in Europe because of its economic benefits. This paper presents the interface bonding according to the variation of extrusion ratio and semi-angle die by observing the interface between Cu and Al using metal microscope. By that result, we can predict the conditions of the interface bonding according to the extruding conditions.

  • PDF

Establishment of Bending Analysis Technique on the Extrusion of Aluminum Alloy (알루미늄형재 압출에 대한 굽힘 해석기법 개발)

  • 양순종;최한호;강범수;이상록
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.152-159
    • /
    • 1998
  • Two angle-shaped extrusions have been studied in order to analyze the bending effect of the extruded product using the three-dimensional rigid-plastic finite element method. The velocity distribution at the outlet becomes the source for the construction of the bending configuration of the final product. in which an analytic scheme has been developed for the description of the bending. A systematic approach presented here appears to have sound agreement with the experimental result, and has been applied to a large extrusion of aluminum alloy.

  • PDF

Characteristics of Plastic Deformation of Commercially Pure Aluminum in Half Channel Angular Extrusion (HCAE) (공업용 순 알루미늄의 반통로각압출(Half Channel Angular Extrusion) 공정에서의 소성 변형 특성)

  • Kim, Kyung Jin;Cho, Hyun Deog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.120-127
    • /
    • 2013
  • A novel severe plastic deformation process named half channel angular extrusion (HCAE) is proposed in order to produce bulk UFG materials. In HCAE process, equal channel angular extrusion (ECAE) and conventional forward extrusion process is integrated to increase the strain per pass and effectiveness of the SPD process. Three-dimensional finite element analysis was carried out to study the deformation behavior of the materials in the HCAE process. HCAE process was performed experimentally on commercially pure aluminum (AA1050) and micro-Vickers hardness test was used to measure the distribution of hardness on the section of normal to the extrusion direction. The results show that HCAE is able to impose more intensive strains per pass and give rise to higher micro-hardness than ECAE.

The Effect of Die Cooling on the Surface Defects of the Aluminum 7075 Extrudates (알루미늄 7075 합금의 압출에서 금형 냉각이 압출재의 표면 결함에 미치는 영향)

  • S.Y., Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.319-326
    • /
    • 2022
  • Direct extrusions of an aluminum 7075 alloy were carried out using 1500 ton machine with and without die cooling system. Cooling of extrusion die has been performed by the flow of liquid nitrogen and controlled by laser thermometer. Billet was 180 mm in diameter and 500 mm in length. The preheating temperatures of billet, container and die were 390℃, 400℃ and 450℃, respectively. Ram speed was kept with 1.25 mm/sec first. The change of ram speed was carried out during extrusion according to the observation of surface defects such as crack or tearing. Extrudates of 8.3 m in length, 100 mm in width and 15 mm in thickness were obtained to observe and analyze surface defects by optical microscopy and EBSD (Electron BackScattered Diffraction). In case of extrusion without die cooling cracks on the surface and tearing in the corner of extrudate occurred in the middle stage and developed in size and frequency during the late stage of extrusion. At the extrusion with die cooling the occurrence of defects could be suppressed on the most part of extrudate. EBSD micrographs showed that cracks and tearings have been resulted from the same origin. Surface defects were generated at the boundaries of grains formed by secondary recrystallization due to surface overheating during extrusion.

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF

Structural analysis and Experimental verification for Aluminum extrusion bodyshell (알루미늄 압출 소재 차체의 해석 및 시험 평가)

  • 최성규;김성종;박근수;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.870-875
    • /
    • 2002
  • The weight saving that results from the substitution of aluminum alloy for steel may be used to provide reduced energy consumption and labor cost due to simplified manufacturing process and improved vehicle performance. Because of these advantages, foreign advanced rolling stock manufacturing companies have been using aluminum alloy for bodyshell manufacturing. In this research, the comparison between FE analysis and actual load test results is performed for aluminum extrusion bodyshell, which is manufactured by Rotem Company. And the results show that the aluminum carbody structure satisfies the strength and stiffness requirements. Commercial FE analysis code and specially designed test equipment are utilized for the structural analysis and the static load test of bodyshell respectively.

  • PDF

Friction Stir Welding in Extrusion Aluminum Carbody of HEMU-400X (Highspeed EMU-400km/h eXperiment) (차세대 분산형 고속전철용 압출재 알루미늄 합금의 마찰교반접합)

  • Chang, W.S.;Chun, C.K.;Kim, H.J.;Park, I.G.;Paik, J.S.;Ro, Y.H.
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.980-985
    • /
    • 2008
  • Since its invention at TWI in 1991, Friction Stir Welding (FSW) has become a major joining process in the aerospace, railway and ship building industries especially in the fabrication of aluminium alloys. In an attempt to optimize the friction stir welding process of Al alloys for extrusion Aluminium carbody of HEMU-400X (Extrusion Aluminum 6xxx series), effects of joining parameters such as tool rotating speed, plunging depth and dwelling time on the weld joints properties were evaluated. Experimental tests were carried out for butt joined Al plates. A wide range of joining conditions could be applied to join Al alloys for Extrusion Aluminum 6xxx series without defects in the weld zone except for certain welding conditions with an insufficient heat input. The microstructures of welds have dynamic-recrystallized grain similar to stir zone in FSW weld. For sound joints without defects, at the rotation speed of 700 rpm with different welding speeds, the tensile strengths of the Stir Zone(SZ) were almost the same, 80% of those of the base metal. (JIS Z 2201)

  • PDF

A Study on The Curvature Extrusion for Al Bumper Beam (알루미늄 범퍼 빔 곡률압출공정에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Oh, K.H.;Park, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.42-45
    • /
    • 2008
  • Recently, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded products are used for the design of automotive frame parts. This study focuses on the determination of process condition fur automotive bumper beam with various curvatures. In this study, a curvature prediction model has been proposed considering the geometric relationship and the characteristic of the curvature extrusion equipment. Using the proposed model and FE analysis, the appropriated process condition was determined to produce the bumper beam. Finally, curvature extrusion experiment was carried out to verify the effectiveness of the proposed curvature prediction model and the process condition.

  • PDF

Effect of Process Parameters on Rectangular Cup Impact Extrusion of an AA1070 Aluminum Alloy (AA1070 알루미늄 합금의 사각형상 충격압출 성형에 미치는 공정 조건의 영향)

  • Jo, M.K.;An, E.;Park, I.W.;Song, I.S.;Kim, H. Y.;Kim, D.;Moon, Y.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.323-331
    • /
    • 2015
  • Impact extrusion is an economical and productive process that can replace the multistage deep drawing process for producing deep rectangular cases. In the current work, a three-dimensional finite element analysis of the impact extrusion process of a commercial purity aluminum alloy (AA1070) was performed to predict loads, material flow, and deformed shapes using the Hansel-Spittel rheology law, which describes the flow stress at various temperatures and strain rates. The role of various process parameters such as friction, clearance between punch and die, aspect ratio and thickness of billet on the process and the shapes was analyzed.