• Title/Summary/Keyword: Aluminum Combustion

Search Result 100, Processing Time 0.022 seconds

Development of combustion test device for study of aluminum powder combustion (알루미늄 분말 연소시험을 위한 장치 개발)

  • Hwang, Yong-Seok;Lee, Ji-Hyung;Lee, Kyung-Hun;Kim, Kwang-Yun;Lee, Sung-Woong;Yeo, Tae-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.548-553
    • /
    • 2011
  • The device for studying combustion characteristic of aluminum powder and water was developed. The device has ability to adjust temperature, pressure, and equivalent ratio to some specified value which effect on combustion characteristic of aluminum and water mixture. Methane combustor, water supply device, aluminum powder feeder, and linear combustor are assembled to aluminum combustion test device. Each device has the ability to supply matter to combustor on steady and quantitatively controlled manner and test sequence specified by user can be automatically controlled. The combustion of aluminum powder was observed when integrated device was operated normally.

  • PDF

Analytical Performance Evaluation of Superdetonative Mode Ram Accelerator; Considering Influence of Aluminum Vapor

  • Sung, Kunmin;Jeung, In-Seuck
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.358-365
    • /
    • 2016
  • In this study, one-dimensional analysis under the assumption of an inviscid flow was conducted for the experiment initiated by the French-German Research Institute of Saint-Louis (ISL) in order to investigate the energy effect of aluminum combustion. Previous theoretical analysis based on the assumptions of isentropic compression and a constant specific heat derived by ISL claimed that the experiment was not affected by the heat of aluminum combustion. However, rigorous analysis in present investigation that considered the average properties behind the shock wave compression and temperature-dependent specific heat showed that the S225 experiment was partially affected by the aluminum combustion. The increase in heat due to aluminum combustion was estimated from the rigorous analysis.

Analytical Study on Performance Evaluation of Superdetonative Mode Ram Accelerator (초폭굉 모드 램가속기의 성능해석에 대한 이론적 연구)

  • Sung, Kunmin;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • An analytical study on performance evaluation of superdetonative mode ram accelerator was conducted for understanding the experimental result. The quasi-one dimensional continuum, momentum, energy equations were solved under the assumption of inviscid flow. It would be noticeable that experimental result could be analytically simulated with the assumptions of inlet shockwave, temperature dependent specific heat, and additional aluminum combustion due to ablation of aluminum projectile in superdetonative operation mode. The acceleration of ram accelerator was comparable to experimental result with the consideration of the additional aluminum combustion energy by ablation of projectile. As result, the experimental result with the aluminum projectile could be affected by heat of aluminum.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.

Combustion Characteristics of Al powder with Water Suspension (Al 분말과 Water 혼합물의 연소특성 연구)

  • Ki, Wan-Do;Kim, Kwang-Yeon;Shmelev, Vladimir;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.157-162
    • /
    • 2012
  • The basic study for combustion characteristics of micron-sized aluminum powder with water suspension was carried out. Under atmospheric pressure, the combustion characteristics of aluminum powder with water suspension was studied by adjust the equivalent ratio and the density of a mixture which effect on burning rate. Based on atmospheric pressure's result, the device for the combustion characteristics of aluminum powder with water suspension under high-pressure environment was developed. In the pressure range from 2 to 50 atm the effect of pressure to burning rate was same as the case of nano-aluminum with water suspension, but the pressure range from 50 to 70 atm the sharp increase in burning rate was observed. In the experiment of varying the equivalence ratio, the combustion did not proceed in the condition of excess oxidizer (eq = 1.5).

  • PDF

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon;Park, Pyuck-Pa;Kim, Ji-Soon;Gromov, Alexander;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Solid Chemical Hydride-Based Hydrogen Ignition System for Aluminum Powder Combustion (알루미늄 분말 연소를 위한 고체 화학수소화물 기반 수소 점화 시스템)

  • Park, Kilsu;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 2019
  • The hydrogen torch ignition system has been widely used to ignite a pure aluminum for aluminum powder combustion system because of its simple ignition method. However, the conventional hydrogen torch ignition system has a disadvantage that requires a high-pressure tank to supply hydrogen, which leads to the increase of the weight. In order to solve this problem, a hydrogen ignition system using $NaBH_4$, a solid chemical hydride, was designed in this study. The thermal decomposition of $NaBH_4$ was initiated approximately at $500^{\circ}C$ and hydrogen was generated. The parameters affecting the thermal decomposition characteristics of $NaBH_4$ were analyzed and the aluminum combustion test was carried out using $NaBH_4$-based hydrogen ignition system to study the applicability to a practical aluminum-combustion propulsion system.

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

Combustion modeling of nano aluminum particle and water mixture (나노 알루미늄-물 혼합물의 수반응 연소 모델링)

  • Yoon, Shi-Kyung;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.472-475
    • /
    • 2010
  • Theoretical consideration on the combustion behavior of nano-aluminum and water mixture was conducted. The regions are divided into; 1)water+aluminum 2)steam+aluminum 3)reaction zone. Latent heat of vaporization was considered as a function of pressure in case of phase change of water. Also, pressure exponent was studied of various sized nano particles within the range of 0.1MPa ~ 10MPa.

  • PDF

Comparison Study on Burning and Ignition Characteristics for Single Aluminum and Magnesium Particles (EDB에 의해 부양된 알루미늄과 마그네슘 단일 입자의 점화 및 연소 특성 비교 연구)

  • Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.311-316
    • /
    • 2010
  • The ignition and the burning characteristics of aluminum and magnesium particles ($30-110{\mu}m$ in diameter) isolated due to electrodynamic levitation were experimentally investigated. The burning time, the ignition delay time, the flame temperature, and the flame diameter were measured. The thermal radiation intensity was measured using the photomultiplier tube and the combustion history was monitored by high-speed cinematography. Two-wavelength pyrometry measured the temperature of the burning particles. The burning times of aluminum particles were measured approximately 5 to 8 times longer than those of magnesium particles. Exponents of $D^n$-law, for the burning rate of magnesium and aluminum particles of diameters less than $110{\mu}m$, are found to be 0.6 and 1.5, respectively. The instant of aluminum ignition is clearly distinguished with the ignition delay time little less than 10 ms, however the burning history of magnesium particle exhibits no distinct instant of the ignition. The ignition delay time of magnesium particle (less than $110{\mu}m$) were approximately shown in the range from 50 to 200 ns. The flame temperatures of single metal particles are lower than the boiling point of the oxide. The nondimensional flame diameters for magnesium are decreased with increasing of the diameter. The nondimensional flame diameters for aluminum are not changed significantly.

  • PDF