• Title/Summary/Keyword: Aluminum 6061-T6

Search Result 108, Processing Time 0.024 seconds

A Study on the Fatigue Strength Evaluation of Metal Matrix Composite (금속기 복합재료의 피로강도 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.41-53
    • /
    • 1994
  • In this paper, rotating-bending fatigue tests of the SiC-whisker- reinforced 6061-T6 aluminum alloy and 6061-T6 alumiunm alloy made by power metallurgy were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechnisms in both materials were clarified through successive surface observations using the plastic replica method. In the case of the SiC-whisker-reinforced composites, there are whisker rich and poor zones and the fatigue crack is nucleated from the end of whiskers near the boundary. On the other hand, in the case of the 6061-T6 aluminum alloy, the fatigue crack is nucleated from defects and propagates by shear. Moreover, the results were discussed based on linear notch mechanics.

  • PDF

Numerical Evaluation of Backward Extrusion and Head Nosing for Producing a 6.75L Small Seamless AA6061 Liner (6.75L급 소형 AA6061 라이너의 후방압출 및 노우징 공정에 관한 해석적 연구)

  • Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.204-215
    • /
    • 2013
  • As a pressure vessel, a small seamless aluminum liner with inner volume of about 6.75L is made from an initial billet material of AA6061-O. To produce the aluminum liner, warm forging including backward extrusion and head nosing was numerically simulated using a billet initially pre-heated to about $480^{\circ}C$. Compression tests on the billet material were performed at various temperatures and strain rates, and the measured mechanical properties were used in the numerical simulations. For the backward extrusion and the head nosing, the tool geometries were designed based on the desired configuration of the aluminum liner. Furthermore, the structural integrity of the tooling was evaluated to ensure adequate tool life. The seamless aluminum liner has an endurance limit of about 1.47MPa ($15Kg_f/cm^2$), estimated based on the required inner pressure. The results confirm that the small seamless aluminum liner of AA6061-O can be successfully made by using the two stage warm forging procedures without any bursting failures.

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC (고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy (Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석)

  • Kim, Chan Kyu;Cho, Young Tae;Jung, Yoon Gyo;Kang, Shin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

Microstructure and Mechanical Properties of AA6061/AA5052/AA6061 Complex Sheet Fabricated by Cold-Roll Bonding Process (냉간압연접합법에 의해 제조된 AA6061/AA5052/AA6061 복합판재의 미세조직 및 기계적 성질)

  • Hwang, Ju-Yeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.392-397
    • /
    • 2019
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.

A Study on Deformation Behaviors of Al 6061, 7075 Tube at Different Heat Treatments for Warm Hydroforming (온간액압성형공정 적용을 위한 알루미늄 6061, 7075 튜브의 열처리조건에 따른 변형특성연구)

  • Yi, Hyae-Kyung;Moon, Young Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The deformation behaviors of full annealed and T6 treated 6061, 7075 aluminum tubes are investigated at various temperature performing uniaxial tensile test. Full annealed Al 6061 and Al7075 tubes, and T6 treated Al7075 tube don't show sharp local necking with an elongation of 50% at $300^{\circ}C$. So it is expected that influenced by elevated tempterature. At $300^{\circ}C$ and strain rate of 0.001/s, many micro-cracks are observed in T6 treated Al 6061 tube, which is believed to be responsible for the decrease of total elongation.

Fracture mode of friction spot joined Aluminum alloy used in automobile industry (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 파단특성)

  • Kim, Teuk-Gi;Cheon, Chang-Geun;Rajesh, S.R.;Kim, Hong-Ju;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.316-318
    • /
    • 2007
  • Friction Spot Joining(FSJ) has a strong potential for aluminum alloy joining in automobile industries. The present paper focuses on the attempt to optimize the FSJ process for lap joining of A5052-H32 and A6061-T6 aluminum alloys. For A5052 maximum tensile shear strength has been observed for a tool rotating speed of 800rpm and for A6061 at 1000 rpm. Study on fracture modes of the tensile tested specimens of both A5052-H32 and A6061-T6 revealed, for high tensile strength values, plug fracture mode and lower tensile values, shear fracture mode. Above 2000 rpm distortion of the base metal, beside the tool shoulder was larger and plug fracture mode has been observed.

  • PDF

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations (산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.