• 제목/요약/키워드: Aluminum 6061

검색결과 261건 처리시간 0.028초

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.72-79
    • /
    • 2022
  • A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

알루미늄 합금 Al 6061 MIG용접부의 기공에 관한 연구 (A Study on the Porosity in MIG Welding for Aluminum Alloy 6061)

  • 김영주;김대만;감병오;김성언;조상명
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.179-181
    • /
    • 2004
  • 알루미늄 및 알루미늄 합금은 철강 다음으로 사용량이 많은 비철 금속으로 그 용도는 매년 증가하고 있다. 항공기 부품에서 자동차, 선박 및 전자산업 등에 이르기까지 다양하게 사용되고 있으며 그 조립을 위한 용접기술의 중요성이 대두되고 있다. (중략)

  • PDF

나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성 (Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy)

  • 황성완
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

Al 6061/AFRP 하이브리드 복합재료의 강도특성에 미치는 내후성 영향 (Effect of Sunshine Treatment on Strength in Al 6061/AFRP Hybrid Composite)

  • 윤한기;김연겸;차영준
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.31-39
    • /
    • 1997
  • This research is to evaluate the effect of sunshine treatment on the strength in the Al 6061/AFRP hybrid composite(APAL). APAL specimens were processed by autoclave curing system under the constant condition of curing temperature, time and aluminum surface pertreatment. Aramid patched aluminum alloy can be widely used for the repair of the damage part of the aircraft. The tensile strength of the sunshine treated APAL 2P and 6P composite is 14%, 22% smaller than that of the non-treated material. The interlaminar shear strength of the APAL specimens for the adhesive length of 5mm is 24% higher than that of the APAL for the adhesive length of 10mm. In the case of APAL DS 1P material, interlaminar shear strength of the specimen which was sunshine treated for 200 hours is 21% smaller than that of the non-treated material while interlaminar shear strength of the specimen which was immersed in a 70.deg. C fresh water for 1200 hours decreases by 75.7%.

  • PDF

미세입자 분사가공시 직교배열표의 통계적 분석에 의한 표면형상의 최적 분사 조건 (Optimal Blasting Conditions for Surface Profile when Micro Particle Blasting by Statistical Analysis of Orthogonal Arrays)

  • 권대규;왕덕현
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.148-154
    • /
    • 2016
  • A study on the micro particle blasting was conducted to find the optimum conditions of the blasted surface of aluminum 6061. The particle type such as $Al_2O_3$ and SiC, nozzle diameter, pressure, standoff distance and injection time were used as blasting conditions. Statistical method of orthogonal arrays(ANOVA) was used to find optimum conditions of maximum depth and maximum diameter of blasted surface. Particle type, nozzle diameter, and pressure were found to be the main factors of maximum blasted depth and diameter. Maximum blasted diameter was affected by increasing pressure and nozzle diameter but saturated maximum diameter. Maximum blasted depth was affected by pressure and nozzle diameter when aluminum 6061 was blasted with $Al_2O_3$ particle. The value of surface roughness was increased as pressure and nozzle diameter increased when aluminum 6061 was blasted with SiC.

산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구 (Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.147-157
    • /
    • 2022
  • Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF