• Title/Summary/Keyword: Aluminum(III)

Search Result 120, Processing Time 0.023 seconds

Preparation and Analysis of High Functional Silicone Hydrogel Lens Containing Metal Oxide Nanoparticles by Photopolymerizaion

  • Heo, Ji-Won;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.193-199
    • /
    • 2022
  • In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1 % to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.

The Correlation Between the Polymeric Aluminum Species of Inorganic Coagulant and Its Coagulation Efficiency (알루미늄계 무기 고분자 응집제에서 알루미늄 폴리머 생성과 응집효율과의 상관관계)

  • Kim, Jee-Yeon;Lee, Chang-Ha;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.331-336
    • /
    • 2004
  • The correlation between polymeric aluminum species of coagulant and its coagulation efficiency was investigated using several commercial polymeric Al(III) inorganic coagulants (Poly Aluminum Hydroxy Chloro Sulfate 2020 (PAHCS2020), Poly Aluminum Hydroxy Chloro Sulfate 2500 (PAHCS2500) which was introduced in Korean water treatment plants. The poly aluminum chloride (PAC), Poly Aluminum Hydroxide Chloride Silicate (PACS)) and the aluminum salts ($AlCl_3$, Alum ($Al_2(SO_4)_3$)) were used for the purpose of comparison. The comparison of the coagulation efficiency of each coagulant was made by turbidity removal through the standard jar testing procedure and the determination of the hydrolytic Al(III) species was made by the ferron method which can differentiate the monomeric aluminum species from the polymeric aluminum species. Overall, PAHCS2020 and PAHCS2500 showed the better performance in turbidity removal than the aluminum salts. The performance of coagulation was even better without adjustment of pH during the coagulation experiment. The positive correlation between polymeric aluminum species of coagulant and coagulation efficiency was found.

Atomistic Study of III-Nitride Nanotubes (3족-질화물 나노튜브의 원자단위 연구)

  • 변기량;강정원;이준하;권오근;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2004
  • We have investigated the structures, the energetic, and the nanomechanics of the single-wall boron-, aluminum-, and gallium-nitride nanotubes using atomistic simulations based on the Tersoff-type potential. The Tersoff-type potential for the III-nitride materials has effectively described the properties of the III-nitride nanotubes. Nanomechanics of boron-, aluminum-, and gallium-nitride nanotubes under the compression loading has been investigated and their Young's moduli were calculated.

Preparation of Aluminum Nitride Powders and Whiskers Using Aluminum(III) Salts as a Precursor

  • Jung, Woo-Sik;Chae, Seen-Ae
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.720-724
    • /
    • 2003
  • Aluminum nitride (AlN) powders were synthesized by using a mixture of an aluminum nitrate or sulfate salt and carbon (mole ratio of $Al^{3+}$ to carbon=L : 30). The AlN was obtained by calcining the mixture under a flow of nitrogen in the temperature range 1100-1$600^{\circ}C$ and then burning out the residual carbon. The process of conversion of the salt to AlN was monitored by XRD and $^{27}$ Al magic-angle spinning (MAS) NMR spectroscopy. The salt decomposed to ${\gamma}$-alumina and then converted to AlN without phase transition from ${\gamma}$-to-$\alpha$-alumina. $^{27}$ Al MAS NMR spectroscopy shows that the formation of AlN commenced at 110$0^{\circ}C$. AlN powders obtained from the sulfate salt were superior to those from the nitrate salt in terms of homogeneity and crystallinity. A very small amount of AlN whiskers was obtained by calcining a mixture of an aluminum sulfate salt and carbon at 115$0^{\circ}C$ for 40 h, and the growth of the whiskers is well explained by the particle-to-particle self-assembly mechanism.

An Experimental Study on the Electromagnets for the Electromagnetics Maglev Vehicle(III) (상전도 흡인식 자기부상열차용 전자석에 대한 실험적 연구(III))

  • Kim, Bong-Seop;Chung, Hyun-Kap
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.12-14
    • /
    • 1996
  • Static tests on the performance of the electromagnets of the electromagnetic maglev vehicle were conducted. Performance of the magnets wound with the alumimum sheet were tested and compared with that of the magnets constructed with aluminum coils of rectangular cross section. It turns out that with the use of the aluminum sheet we can improve the lifting force per magnet by 19.5% and thereby make electromagnets lighter than those made with the aluminum coils of rectangular cross section.

  • PDF

Determination of Aluminum Leached from Cooking Utensils by using Flow Injection Analysis (흐름주입분석법에 의한 주방용기로부터 용출된 알루미늄의 정량)

  • Choi, Yong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.281-289
    • /
    • 2004
  • Optimal analytical conditions have been established for mixing and reaction coil length, concentrations of ECR, CTAB, and acetate, reaction temperature and pH in the determination of aluminum by using flow injection analysis(FIA). Detection limit and repeatability for this system were $3{\mu}g/L$ and better than 1% of relative standard deviation, respectively. The interference from iron(III) was suppressed up to 6mg/L of iron(III) by $0.1{\mu}M$ ascorbic acid, and the interference from fluoride could be tolerated in absorption of Al/ECR/CTAB derivative by 10mM boric acid at pH 3.5 adjusted with nitric acid. This FIA system was applied to the determination of aluminum leached from cooking utensils by distilled and tap water containing fluoride ranged from 0.5 to 2mg/L by measurement of absorbance for Al/ECR/CTAB at 585nm. The leached aluminum content was increased with increasing concentration of fluoride. The aluminum contents leached from aluminum utensils by tap water were about 9 fold higher than those leached by distilled water, whereas aluminum contents leached by distilled water containing fluoride were about 2 fold higher compared to those leached by distilled water. That represented that other dissolved substances as well as fluoride in tap water contributed to liberation of aluminum from aluminum utensils. A comparison between FIA data and ICP-AES data by correlation and paired t test showed that the FIA system could be accepted as a good alternative method for the determination of aluminum in tap water.

Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants (하수의 화학적 응집조건 및 응집제별 응집효율 분석)

  • Park, June-Gue;Tian, Dong-Jie;Park, Noh-Back;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

Removal of Aluminum from Water Samples by Sorption onto Powdered Activated Carbon Prepared from Olive Stones

  • Ghazy, S.E.;El-Morsy, S.M.
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • Recent studies have revealed the poisonous nature of aluminum(III) species to aquatic and terrestrial organisms. Therefore, this investigation aims to develop batch adsorption experiments in the laboratory, aiming to the removal of aluminum(III) from aqueous solutions onto powdered activated carbon (PAC). The latter (which is an effective and inexpensive sorbent) was prepared from olive stones generated as plant wastes and modified with an aqueous modifying oxidizing agent, viz. $HNO_3$. The main parameters (i.e. initial solution pH, sorbent and $Al^{3+}$ ions concentrations, stirring times and temperature) influencing the sorption process were examined. The results obtained revealed that the sorption of $Al^{3+}$ ions onto PAC is endothermic in nature and follows first-order kinetics. The adsorption data were well described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models over the concentration range studied. Under the optimum experimental conditions employed, the removal of ca. 100% $Al^{3+}$ ions in the concentration range $1.35-2.75\;mg{\cdot}l^{-1}$ was attained. Moreover, the procedure was successfully applied to the recovery of aluminum spiked to some environmental water samples with an RSD (%), does not exceed 1.22%.

Effects of Characterization of Polymeric Al(III) Coagulants on Coagulation of Surface Water (고분자성 Al(III) 응집제의 특성이 상수원수의 응집특성에 미치는 영향)

  • Lee, Sun Gi;Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • This research explored the feasibility of preparing and utilizing a preformed polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride solutions did produce high yields of the type of Al polymers useful to water treatment applications. PACl's characteristic analysis showed that the quantity of polymeric Al produced at value of $r(OH_{added}/Al)=2.2$ was 83% of the total aluminum in solution, as showing maximum contents and precipitate was dramatically increased when r was increased above 2.35. And PACl was stable during sitoring period so aging effect was negligible. Results of the coagulation of Nakdong river waters with three PACls showed that the effectiveness of the three coagulants can be considered as r = 2.2 > r = 2.0 > r = 2.35 which are also the order of higher polymeric aluminum contents. Coagulation results for synthetic water exhibited optimum dose of 0.25mM Al, for three PACls, but above optimum dose, r = 2.0 and 2.2 PACl impaired the coagulation and sedimentation of turbidity and humic acid because of the restabilization of particulate. The effect of pH for on coagulation of Nak Dong River water showed that it had much effect turbidity and TOC removal, especially near pH 7. But pH effect was little for turbidity and TOC removal when r = 2.35 PACl was used for coagulation, that PACl had much more precipitates content.

  • PDF

Nitrogen and Phosphorus Removal Efficiency of Aluminum Usage in DEPHANOX Process (DEPHANOX 공정 내 알루미늄 첨가에 따른 질소 및 인 제거 효율 평가)

  • Lee, Beom;Park, Noh-Back;Tian, Dong-Jie;Heo, Tae-Young;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.295-303
    • /
    • 2012
  • Removal of total nitrogen (T-N) and total phosphorus (T-P) was evaluated in a DEPHANOX process by adding Al(III) to the separator to maintain T-P in the final effluent below 0.2 mg/L. pH in each reactor was maintained 7~8 after addition of Al(III) to the levels of 5, 10, 15 mg/L. The removal efficiency of COD and T-N decreased at higher Al(III) dose, but T-P removal efficiency increased from 76.28 to 84.02, 94.66% at Al(III) dose of 5, 10, 15 mg/L, respectively. T-P in effluent showed 0.17 mg/L at Al(III) dose of 15 mg/L. Minimum 15 mg/L of Al(III) was required to maitain T-P below 0.2 mg/L in the final effluent.