• Title/Summary/Keyword: Aluminium oxide($Al_2O_3$

Search Result 56, Processing Time 0.039 seconds

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF

The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

  • Kulunk, Tolga;Kulunk, Safak;Baba, Seniha;Ozturk, Ozgur;Danisman, Sengul;Savas, Soner
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.382-387
    • /
    • 2013
  • PURPOSE. Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 ${\mu}m$ aluminum oxide particles ($Al_2O_3$), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + Al coating and air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (${\alpha}$=.05). RESULTS. The highest bond strengths were obtained by air abrasion with 50 ${\mu}m$ $Al_2O_3$, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION. Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

The Precursor Ratio Effects on the Electrical and Optical Properties of the ZnO:Al Transparent Conducting Oxide Grown by ALD Method

  • Kwon, Sang-Jik;Lee, Hyun-Jae;Jeong, Hak-June;Seo, Yong-Woon;Jeong, Heui-Seob;Hwang, Man-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.924-927
    • /
    • 2003
  • Aluminium-doped ZnO (ZnO:Al) films were grown by atomic layer-controlled deposition on glass substrates at temperature of 200 $^{\circ}C$ using diethylzinc($Zn(C_{2}H_{2})_{2}$; DEtZn), water($H_{2}O$) and trimethylaluminium ($Al(CH_{3})_{3}$; TMA) as precursors. As the cycle ratio of TMA to DEZn(TMA/DEZn) increased, the resistivity of the films decreased and the roughness increased. In the case of TMA/DEZn pulse ratio of 1 to 10, the film had a resistivity of $9.7{\times}l0^{-4}{\Omega}{\cdot}cm$ and a roughness of 2.25nm(rms), while in the case of only DEZ injection the film had a resistivity of $3.5{\times}10^{-3}{\Omega}{\cdot}cm$ and a roughness of 1.07nm(rms)

  • PDF

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish;K.N. Sridhar;L. Seenappa;H.C. Manjunatha;Y.S. Vidya;B. Chinnappa Reddy;S. Manjunatha;A.N. Santhosh;R. Munirathnam;Alfred Cecil Raj;P.S. Damodara Gupta;B.M. Sankarshan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1519-1526
    • /
    • 2023
  • For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.

Problem Analysis and Improvement of an Experiment on Reactivityof Metals in ChemistryⅠ (화학Ⅰ 금속의 반응성 실험의 문제점 분석 및 개선방안)

  • Seong, Suk-kyoung;Choi, Chui-Im;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.368-376
    • /
    • 2009
  • In this study we investigated and tried to understand problems monitored in an experiment on reactivity of metals in chemistry I. Three problems were discussed. First, the reason that aluminium plate does not react with other metal ions such as zinc, iron and copper was studied and the way to overcome this problem was suggested. Second, the reason that the bubbles were generated when FeS$O_4$(aq) and Zn(s) react was discussed. Third, the precipitates which appeared in the reaction of FeS$O_4$(aq) and Zn(s) were identified. Through reference study and experimental investigation, we could reach the following results. First, aluminium could not react with other metal ions due to the surface oxide layer that is formed very fast and prevents aluminium from reacting with metal ions in solution. This problem could be overcome by allowing a competing reaction of acid and aluminium during the reaction of aluminium and metal ions. Second, the observed bubbles were identified to be hydrogen gas, produced by the reaction between metals and hydronium ion in the solution. Third, black precipitates that were produced on the surface of zinc plate and exhibited magnetic property were characterized to be $Fe_3O_4$(s), and brown precipitates that were produced in the solution phase were to be $Fe_2O_3$(s) by the analysis of X-ray photoelectron spectra.

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.