• Title/Summary/Keyword: Alternative Carbon Source

Search Result 103, Processing Time 0.032 seconds

A Use of Heterotrophic Denitrification for the Supply of Alkalinity during Sulfur-utilizing Autotrophic Denitrification (황-이용 독립영양 탈질시 알칼리도 저감을 위한 종속영양 탈질의 이용방안)

  • Lee, Dong-Uk;Park, Jae-Hong;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1995-2005
    • /
    • 2000
  • The use of heterotrophic denitrification as an alternative method for supplying alkalinity during sulfur-utilizing autotrophic denitrification was evaluated by examining the effects of external carbon source (both type and concentration) and HRT on denitrification efficiency. Concentrations of $NO_3{^-}-N$ and $COD_{Cr}$ of nitrified landfill leachate used for experiment were 700-900mg/L and 900-2500mg/L. respectively, All experiment was conducted with sulfur packed bed reactors (SPBRs) which were operated at $35^{\circ}C$. The fraction of $NO_3{^-}-N$ removed by heterotrophic denitrification ($HDNR_{fraction}$) to balance the alkalinity consumption by autotrophic denitrification varied with the type of external carbon source. When methanol and sodium acetate was added at theoretical HDNRfraction value. 100% denitrification was achieved without alkalinity addition. However, glucose and molasses require $HDNR_{fraction}$ value greater than theoretical value for complete denitrification. The EBCT and volumetric loading rate at which 100% denitrification efficiency could be achieved were 6.76 h and $2.84kg-NO_3{^-}-N/m^3{\cdot}d$, respectively, based on the fact that 100% denitrification occurred within the bottom 11.5 cm layer of the SPBR. The maximum nitrogen removal rate occurred with 89% removal efficiency at loading rate of $5.05kg-NO_3{^-}-N/m^3{\cdot}d$. However, at short EBCT, clogging of SPBR was observed with excess growth of heterotrophic denitrifiers. This problem may be eliminated by back washing or by separating of heterotrophic denitrification from sulfur-utilizing denitrification.

  • PDF

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

Development of Direct DME Synthesis Process (DME 직접 합성공정 기술개발)

  • Mo, Yong-Gi;Cho, Won-Jun;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2010
  • The physical properties of DME(Dimethyl Ether) are very similar to LPG and well-mixed. As cetane number of DME is similar to diesel fuel that can replace diesel fuel and alternative energy. DME is a clean energy source that can be manufactured from various raw materials such as natural gas, CBM(Coal Bed Methane) and biomass. DME has no carbon-carbon bond in its molecular structure and its combustion essentially generates no soot as well as no SOx. The development of DME process in KOGAS have 4 section. First, syngas section can be manufactured various syngas ratio. This completes the tri-reforming process for the synthesis gas ratio of approximately 4.0 to 1.0 range can be adjusted. Second, $CO_2$ is removed from the $CO_2$ removal section of about 92~99%, so the maximum concentration of $CO_2$ entering the DME synthesis reactor should not exceed 8%. Third, in the DME synthesis section, if the temperature of DME reactor increases, the activity of DME catalyst increased. but for the long-term activity is desirable to maintain the proper temperature. Finally, the purity of DME in the DME purification section is over 99.6%.

Economic Feasibility Analysis Study to Build a Plant-based Alternative Meat Industrialization Center (식물성 기반 대체육 산업화센터 구축을 위한 경제적 타당성 분석)

  • Yong Kwang Shin;So Young Lee;Jae Chang Joo
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.118-126
    • /
    • 2024
  • Recently, the alternative meat (food) market is growing rapidly due to the increase in meat consumption due to global population growth and income improvement, as well as issues such as equal welfare, carbon neutrality, and sustainability. The government is also developing a green bio convergence new industry development plan to foster alternative foods, but there are difficulties in commercialization due to the lack of technology and insufficient production facilities among domestic small and medium-sized enterprises, so it is necessary to build joint utilization facilities and equipment to resolve the difficulties faced by companies. am. In addition, small and medium-sized enterprises are having difficulty developing and commercializing plant-based meat substitutes due to a lack of technical skills, and related equipment is expensive, making it difficult to build equipment on their own. Accordingly, Jeollabuk-do is pursuing a strategy to secure the source technology for development, processing, and industrialization of plant-based substitute meat at the level of developed countries by establishing a plant-based alternative meat industrialization center. In this study, an economic feasibility analysis study was conducted when a plant-based alternative meat industrialization center is built in Jeollabuk-do. As a result of the analysis, B/C=1.32, NPV=374 million won, and IRR=4.8%, showing that there is economic feasibility in establishing an alternative meat industrialization center. In addition, as a result of analyzing the regional economic ripple effect resulting from the establishment of an industrialization center, if 38 billion won is invested in Jeollabuk-do, the nationwide production inducement effect is 74 billion won, the added value inducement effect is 29.8 billion won, and the employment inducement effect is 672 people

Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Ruminant's Products

  • Song, Man K.;Kennelly, John J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.306-314
    • /
    • 2003
  • Bio-hydrogenation of $C_{18}$-unsaturated fatty acids released from the hydrolysis of dietary lipids in the rumen, in general, occurs rapidly but the range of hydrogenation is quite large, depending on the degree of unsaturation of fatty acids, the configuration of unsaturated fatty acids, microbial type and the experimental condition. Conjugated linoleic acid (CLA) is incompletely hydrogenated products by rumen microorganisms in ruminant animals. It has been shown to have numerous potential benefits for human health and the richest dietary sources of CLA are bovine milk and milk products. The cis-9, trans-11 is the predominant CLA isomer in bovine products and other isomers can be formed with double bonds in positions 8/10, 10/12, or 11/13. The term CLA refers to this whole group of 18 carbon conjugated fatty acids. Alpha-linolenic acid goes through a similar bio-hydrogenation process producing trans-11 $C_{18:1}$ and $C_{18:0}$, but may not appear to produce CLA as an intermediate. Although the CLA has been mostly derived from the dietary $C_{18:2}$ alternative pathway may be existed due to the extreme microbial diversity in the reticulo-rumen. Regardless of the origin of CLA, manipulation of the bio-hydrogenation process remains the key to increasing CLA in milk and beef by dietary means, by increasing rumen production of CLA. Although the effect of oil supplementation on changes in fatty acid composition in milk seems to be clear its effect on beef is still controversial. Thus further studies are required to enrich the CLA in beef under various dietary and feeding conditions.

Biosynthesis of Polyunsaturated Fatty Acids: Metabolic Engineering in Plants (고도불포화지방산 생합성: 식물에서의 대사공학적 응용)

  • Kim, Sun-Hee;Kim, So-Yun;Kim, Jong-Bum;Roh, Kyung-Hee;Kim, Young-Mi;Park, Jong-Sug
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.93-102
    • /
    • 2009
  • Polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have significantly beneficial effects on health in relation to cardiovascular, immune, and inflammatory conditions and they are involved in determining the biophysical properties of membranes as well as being precursors for signaling molecules. PUFA biosynthesis is catalyzed by sequential desaturation and fatty acyl elongation reactions. This aerobic biosynthetic pathway was thought to be taxonomically conserved, but an alternative anaerobic pathway for the biosynthesis of PUFA is now known to contain analogous polyketide synthases (PKS). Certain fish oil can be a rich source of PUFA although processed marine oil is generally undesirable as food ingredients because of the associated objectionable flavors that are difficult and cost-prohibitive to remove. Oil-seed plants contain only the 18-carbon polyunsaturated fatty acid alpha-linolenic acid, which is not converted in the human body to EPA and DHA. It is now possible to engineer common oilseeds which can produce EPA and DHA and this has been the focus of a number of academic and industrial research groups. Recent advances and future prospects in the production of EPA and DHA in oilseed crops are discussed here.

Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice

  • Qiu, Liang;Yang, Dong;Tao, Xueying;Yu, Jun;Xiong, Hua;Wei, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1491-1499
    • /
    • 2017
  • Trimethylamine N-oxide (TMAO), which is transformed from trimethylamine (TMA) through hepatic flavin-containing monooxygenases, can promote atherosclerosis. TMA is produced from dietary carnitine, phosphatidylcholine, and choline via the gut microbes. Previous works have shown that some small molecules, such as allicin, resveratrol, and 3,3-dimethyl-1-butanol, are used to reduce circulating TMAO levels. However, the use of bacteria as an effective therapy to reduce TMAO levels has not been reported. In the present study, 82 isolates were screened from healthy Chinese fecal samples on a basal salt medium supplemented with TMA as the sole carbon source. The isolates belonged to the family Enterobacteriaceae, particularly to genera Klebsiella, Escherichia, Cronobacter, and Enterobacter. Serum TMAO and cecal TMA levels were significantly decreased in choline-fed mice treated with Enterobacter aerogenes ZDY01 compared with those in choline-fed mice treated with phosphate-buffered saline. The proportions of Bacteroidales family S24-7 were significantly increased, whereas the proportions of Helicobacteraceae and Prevotellaceae were significantly decreased through the administration of E. aerogenes ZDY01. Results indicated that the use of probiotics to act directly on the TMA in the gut might be an alternative approach to reduce serum TMAO levels and to prevent the development of atherosclerosis and "fish odor syndrome" through the effect of TMA on the gut microbiota.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Applications and Prospects of Stable Isotope in Aquatic Ecology and Environmental Study (수생태 환경 연구에 있어 안정동위원소의 활용과 전망)

  • Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.96-104
    • /
    • 2018
  • Stable isotope approach for aquatic ecology and environmental sciences has been introduced as very useful technique since 1980s and also has been applied to investigate various issues in aquatic ecology and environmental study last 10 years in Korea. Especially carbon and nitrogen isotope ratios have been mainly used to understand food web energy flow and ecosystem structure. In addition, nitrogen isotope ratio has been applied for nitrogen cycle and source identification as well as biomagnification studies. However, large temporal or spatial variations of nitrogen isotope ratio of primary producer have been found in many aquatic environments, and it is regarded as the critical problems to determine trophic level of aquatic animals. Recently, the compound specific isotope analysis of nitrogen within individual amino acids has been developed as an alternative method for trophic ecology. This article introduces the progress history of stable isotope application in aquatic ecology and environmental sciences, and also suggests new direction based on future prospects in stable isotope ecology and environmental study.