• Title/Summary/Keyword: Alternating flow

Search Result 112, Processing Time 0.022 seconds

Static Chaos Microfluid Mixers Using Alternating Whirls and Laminations (미소블록에 의한 교차 회전유동과 미소유로에 의한 박층유동을 이용한 정적 혼돈 미소유체 혼합기에 관한 연구)

  • Chang, Sung-Hwan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1549-1556
    • /
    • 2004
  • We have deigned, fabricated and compared four different types of static chaos microfluid mixers, including the mixers using straight channel flow, microblock-induced alternating whirl flow, microchannel-induced lamination flow, and combined alternating whirl-lamination flow. Among them, the alternating whirl-lamination (AWL-type) mixer, composed of 3-D rotationally arranged microblocks and dividing microchannels fabricated by conventional planar lithography process, is effective to reduce the mixing length over wide flow rate ranges. We characterize the performance of the fabricated mixers, through the flow visualization technique using phenolphthalein solution. We verify that the AWL-type microfluid mixer shows the shortest fluid mixing length of 2.8mm∼5.8mm for the flow rate range of Re=0.26∼26 with the pressure drop lower than 5kPa. Compared to the previous mixers, requiring the mixing lengths of 7∼17mm, the AWL-type microfluid mixer results in the 60% reduction of the mixing lengths. Due to the reduced mixing lengths within reasonable pressure drop ranges, the present micromixers have potentials for use in the miniaturized Micro-Total-Analysis-Systems($\mu$TAS).

Filter Characteristics and Filter Criteria of Geotextiles Under Alternating Flow Conditions (교번류에 대한 Geotextile의 여과특생과 여과기준)

  • Jo, Sam-Deok;Baek, Seung-Cheol;Hong, Seong-Wan
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.21-34
    • /
    • 1990
  • Laboratory experiments are performed for staple fibre -nonwoven geotextiles which have been widely used in Korea to investigate the filter characteristics of soil/geoteztile system under alternating flow conditions. It is experimentally examined the effects of various design factors such as alternating hydraulic gradient, alternating period, vertical load, gradation and density of foundation soil on the filter structure, vertical permeability and soil retention of soil/geoteztile systems. Based on the experimental results, alternating flow filtration criteria- retention criteria and permeability criteria-for staple fibre-nonwoven geotextiles made in Korea are suggested.

  • PDF

Implementing Distributed Optimal Power Flow Using the Alternating Direction Method

  • Chung Koohyung;Kim Balho H.;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.412-415
    • /
    • 2005
  • The recent requirement for faster and more frequent solutions has encouraged the consideration of parallel implementations using decentralized processors. Distributed multi-processor environments can potentially greatly increase the available computational capacity and decrease the communication burden, allowing for faster Optimal Power Flow (OPF) solutions. This paper presents a mathematical approach to implementing distributed OPF using the alternating direction method (ADM) to parallelize the OPF. Several IEEE Reliability Test Systems were adopted to demonstrate the proposed algorithm.

An Efficient Implementation of Optimal Power Flow using the Alternating Direction Method (Alternating Direction Method를 이용한 최적조류계산의 분산처리)

  • Kim, Ho-Woong;Park, Marn-Kuen;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1424-1428
    • /
    • 1999
  • This paper presents a mathematical decomposition coordination method to implementing the distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPT. The proposed approach is based on the Alternating Direction Method (ADM), a variant of the conventional Augmented Lagrangian approach, and makes it possible the independent regional AC-OPF for each control area while the global optimum for the entire system is assured. This paper is an extension of our previous work based on the auxiliary problem principle (APP). The proposed approach in this paper is a completely new one, however, in that ADM is based on the Proximal Point Algorithm which has long been recognized as one of the attractive methods for convex programming and min-max-convex-concave programming. The proposed method was demonstrated with IEEE 50-Bus system.

  • PDF

Combustion Characteristics of A Regenerative Combustor with the Change of Alternating Period (절환주기 변화에 다른 축열 연소기의 연소특성)

  • Yang, B.O.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • Experimental study on combustion characteristics of a regenerative combustor has performed. High-temperature air combustion in the regenerative combustor is obtained through heat recovery from exhaust gas flow by porous ceramic materials and through alternation of air flow direction through the combustor. Temperature field, CO and NOx emission with respect to the frequency of alternation are measured. It is found that at initial stage of the alternation, temperature of inlet section of main combustion chamber is increased sharply since both high temperature air preheated by the ceramics and prompt fuel injection results in rapid combustion. Following this initial stage, combustion temperature is reduced as the preheated air temperature is reduced. However peak temperature in the chamber and exhaust gas temperature are decreased as the alternation period is reduced, increased temperature of ceramic is observed. CO and NOx emission with respect to the alternation period is also examined. It is found that there exists a range of optimum alternating period for CO and NOx emission characteristics.

  • PDF

SHADOWING PROPERTY FOR ADMM FLOWS

  • Yoon Mo Jung;Bomi Shin;Sangwoon Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.395-408
    • /
    • 2024
  • There have been numerous studies on the characteristics of the solutions of ordinary differential equations for optimization methods, including gradient descent methods and alternating direction methods of multipliers. To investigate computer simulation of ODE solutions, we need to trace pseudo-orbits by real orbits and it is called shadowing property in dynamics. In this paper, we demonstrate that the flow induced by the alternating direction methods of multipliers (ADMM) for a C2 strongly convex objective function has the eventual shadowing property. For the converse, we partially answer that convexity with the eventual shadowing property guarantees a unique minimizer. In contrast, we show that the flow generated by a second-order ODE, which is related to the accelerated version of ADMM, does not have the eventual shadowing property.

Numerical Solutions for the Flow past a Cylinder (원주주위를 지나는 흐름에 관한 수치해석)

  • 조용식;윤태훈
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.291-291
    • /
    • 1988
  • The two dimensional time dependent flow past a circular cylinder is analyzed numerically. In the analysis, equations of conservation of mass and momentum are transformed to equations of stream function-vorticity and vorticity transport, and nondimensionalized by nondimensional parameters representing flow characteristics, The resulting stream function-vorticity equstion and vorticity transport equation are solved by successive over relaxation scheme and alternating direct implicit scheme. Numerical experments are performed for the flow in the range of Reynolds number 125 to 275. The time dependent streamlines, vorticities, pressure on cylinder surface, separation angle, and drag and lift coefficients are calculated, and the method for estimation of pressure on cylinder surface and the outer boundary limit are developed.

- Numerical Solutions for the Flow past a Cylinder- (원주주위를 지나는 흐름에 관한 수치해석)

  • 조용식;윤태훈
    • Water for future
    • /
    • v.31 no.4
    • /
    • pp.291-297
    • /
    • 1998
  • The two dimensional time dependent flow past a circular cylinder is analyzed numerically. In the analysis, equations of conservation of mass and momentum are transformed to equations of stream function-vorticity and vorticity transport, and nondimensionalized by nondimensional parameters representing flow characteristics, The resulting stream function-vorticity equation and vorticity transport equation are solved by successive over relaxation scheme and alternating direct implicit scheme. Numerical experiments are performed for the flow in the range of Reynolds number 125 to 275. The time dependent streamlines, vorticities, pressure on cylinder surface, separation angle, and drag and lift coefficients are calculated, and the method for estimation of pressure on cylinder surface and the outer boundary limit are developed.

  • PDF

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Study on the Alternating Flow Hydraulics and Its New Potential Application in the Geotechnical Testing Field

  • Sang, Yong;Han, Ying;Duan, Fuhai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • The alternating flow hydraulics (AFH) had demonstrated the unique features in the past. One of the most well-known inventions was the hydraulic machine-gun synchronizer, which had become the standard equipment of airplane during World War I. The studies on the AFH between 1960 and 1980 had trigged many researchers' interests and reached the summit. The disadvantages of the AFH like low efficiency and cooling difficulty had prevented the further development. Few people are engaged in studying the AFH at present. However, the unique characteristics of the AFH inspire the researchers to continuously explore the new special suitable applications. The overviews of the AFH and the new potential application in the geotechnical testing field have been discussed in this paper. First, the research results of the AFH in the past have been summarized. Then, the classifications of the AFH have been introduced in detail according to the working principle, the number of hydraulic transmission pipelines and the mode of input energy. The advantages and the disadvantages of the AFH have been discussed. A novel potential suitable application in the soil test field has been presented at last. The detailed designing ideas of a new dynamic trixial instrument have been given, which will be a more innovational and energy-saving plan according to the current studies. A series of simulation experiments have been done. The simulation results show that the proposed scheme for the new dynamic trixial instrument is feasible. The paper work will also give some inspirations in the reciprocating motion control system.