• Title/Summary/Keyword: Alpha-particle

Search Result 386, Processing Time 0.026 seconds

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size (반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구)

  • Kim, Young-Ju;Park, Young-Shik;Jung, Youn-Woong;Song, Jun-Baek;Park, So-Young;Im, Hang-Joon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.

Experimental and Theoretical Investigations of PAN Molecular Weight Increase in Precipitation Polymerization as a Function of H2O/DMSO Ratio

  • Zhang, Jing;Bu, Fengjing;Dai, Yongqiang;Xue, Liwei;Xu, Zhixian;Ryu, Seung-Kon;Jin, Riguang
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • The precipitation polymerization of acrylonitrile (AN) was carried out in a mixture solution of dimethyl sulfoxide (DMSO) and water at $50{\sim}65^{\circ}C$ using ${\alpha},{\alpha}'$-azobisisobutyronitrile (AIBN) as an initiator. The increased molecular weight polyacrylonitrile (PAN) was prepared with increasing the $H_2O$/DMSO ratio from 10/90 to 80/20. The viscosity average molecular weight of $H_2O$/DMSO solvent was 4.4 times larger than that of $H_2O$/DMF solvent, and precipitation polymerization was accelerlated due to the far decreased chain transfer effect of DMSO. Based on the experimental results, the increased PAN molecular weight was regarded as the summation of two mechanisms: i) particle-particle aggregation and ii) particle-radical attachment. The theoretical equation derived from the mechanisms was well coincided with the experimental results showing the linear relationship between the viscosity average molecular weight and the H2O/DMSO ratio.

Polymer Effects on Appetite Suppression by Lipoic Acid Nanoparticles (리포익산 나노 입자의 식욕 억제에 대한 고분자의 영향)

  • Choi, Hye-Min;Park, Chul-Ho;Lee, Ki-Up;Park, Joong-Yeol;Koh, Eun-Hee;Kim, Hyoun-Sik;Lee, Jong-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.349-354
    • /
    • 2007
  • For decades, the various virtues of ${\alpha}-lipoic$ acid (ALA), a natural material synthesized in most cells, have been intensively studied and proved. Recently it was reported that ALA caused significant bodyweight reduction via appetite suppression. Unfortunately, the efficacy requires an administration over 50 mg/kg. The low bioavailability and the short plasma half life of ALA lead us to explore novel pharmaceutical dosage forms using nanoparticles. In this study, the effect of polymeric stabilizers on the bioavailability improvement of ALA nanoparticles was investigated. The reduction of particle size via nano-comminution technology was successful resulting in volume average particle sizes of 320 - 340 nm. The in vitro release rate of ALA did not reflect the decrease of particle size, possibly because of the self polymerization of ALA during nano-comminution. The type of polymeric stabilizers could not affect the release rate either. However, the in vivo food intake results of ALA showed that nano-suspensions were more effective than microparticles or a salt form. The nano-suspension containing polyvinyl pyrrolidone as the primary stabilizer and polyacrylic acid as the secondary stabilizer showed more improved efficacy for 2 hours.

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS (에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1498-1507
    • /
    • 2003
  • A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.

Change of Particle Size of Spherical Alumina Powders Prepared by Emulsion Method in the Region of Low Hydroxypropylcellulose Concentration (저농도의 HPC 영역에서 에멀젼법에 의해 제조된 구형 알루미나 분말의 입자 크기 변화)

  • Ahn, C.W.;Park, K.S.;Yoo, H.S.;Cho, K.;Lee, Y.W.;Yang, M.S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Spherical alumina gel powders were produced by hydrolysis of aluminum sec-butoxide (Al(sec-OC4H9)3) in a n-octanol/acetonitrile mixed solvent. The enlargement of particle size was induced by increasing HPC (hydroypropylcellulose) concentration (0.005, 0.1, and 0.05 g/ι) and emulsion-state aging time (10 min and 360 min). Mean particle sizes of dried alumina gel powders increased from 1.4 ${\mu}{\textrm}{m}$ to 3.5${\mu}{\textrm}{m}$ at 10-min emulsion-state aging time and from 1.9${\mu}{\textrm}{m}$ to 4.1${\mu}{\textrm}{m}$ at 360-min emulsion-state aging time as HPC concentration increased from 0.005 g/ι to 0.05 g/ι. At the same HPC concentration, particle size of dried alumina gel powder increased with increasing of emulsion-state aging time from 10 min to 360 min. The increase in the average particle size of dried alumina gel powder with increase in HPC concentration was interpreted as the enlargement of particles from alkoxide emulsions unprotected by HPC. The produced dried gel powder calcined at 115$0^{\circ}C$ for one hour transformed to $\alpha$-alumina.

  • PDF

Synthesis of Silicon Nitride from Ethyl Silicate(II) : Effect of Additive on the Nitridation of Silicon Nitride (Ethyl Silicate로부터 Silicon Nitride의 합성(II) : 실화반응에서 첨가제의 영향)

  • 오일환;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.561-569
    • /
    • 1988
  • Mixtures of very small amounts of additive, carbon and silica(about 0.46${\mu}{\textrm}{m}$) which synthesized by the hydrolysis of ethyl silicate, the molar ratio of SiO2/C was fixed to 1/10, was nitrided at 145$0^{\circ}C$. It was considered that the optimum amount of additive to promote the nitridation reaction was below 2.0wt%. By the addition of additive, the nitridation reaction was promoted and formation of $\beta$-Si3N4 was promoted at 145$0^{\circ}C$ for 1hour, but, the nitridation reaction was decreased and the ratio of $\alpha$/$\beta$ of Si3N4, was increased at 145$0^{\circ}C$ for 5 hours. The crystal phase was $\alpha$ phase and the nitridation reaction was promoted and the particle size of silicon nitride was become smaller by the addition of $\alpha$-Si3N4, but silicon nitride of whisker-like form was produced by the addition of transition elements. There was a difference in the lattice constants of $\alpha$-Si3N4, but no difference in its of $\beta$-Si3N4 according to kinds of added substance and reaction time.

  • PDF

Heat Flow Studies in Low Temperature Detectors (저온검출기의 열전도 연구)

  • Kim, Il-Hwan;Lee, Min-Kyu;Kim, Yong-Hamb
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2010
  • Low temperature micro-calorimeters have been employed in the field of high resolution alpha spectrometers. These alpha detectors typically consist of a superconducting or metal absorber and a temperature sensor. The temperature sensor can be a transition edge sensor (TES), a metallic magnetic calorimeter (MMC) or other low temperature detectors for an accurate measurement of temperature change due to an alpha particle absorption. We report a recent study of the heat flow between a replaceable absorber and a temperature sensor. A piece of gold foil in $2.4{\times}2.7{\times}0.03\;mm^3$ is used as an absorber. A $40\;{\mu}m$ diameter Au:Er paramagnetic sensor is attached to another small piece of gold foil in $400{\times}200{\times}30\;{\mu}m^3$ to serve as the temperature sensor. This sensor assembly, Au:Er and gold foil, is placed on a miniature SQUID susceptometer in a gradiometric configuration. The thermal connection between the absorber and the sensor was made with three gold bonding wires. The measured thermal conductance shows a linear dependence to the temperature. The values are in a good agreement with Wiedemann-Franz type thermal conductance of the gold wires.

Effect of Electrolyte on the Adhesion of Particulate Soil to Fabric in the Surfactant Solution-Adhesion of -$\alpha$-$Fe_2O_3$Particles to PET Fabric- (계면활성제 용액네에서 고형오구의 직물에서의 부착에 영향을 주는 전해질 효과-$\alpha$-$Fe_2O_3$입자의 PET 섬유직물에의 부착-)

  • 강인숙;김병주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1465-1474
    • /
    • 2001
  • The dispersion stability of particles and the adsorption of surfactant were examined as a fundamental environment to adhesion of particulate soil to fabric. The adsorption of surfactant on the PEF fabrics decreased with the addition of electrolytes and decreased with increasing the ionic strengths showed similar tendency to PET fabric. And the dispersion force of $\alpha$-Fe$_2$O$_3$particles decreased with the addition of electrolyte. The adhesion of particulate soil to fabric, increased with decreasing the adsorption of surfactant the correlation between the two was high at low ionic strength. The correlation between the adsorption of surfactants on $\alpha$-Fe$_2$O$_3$ particles and the adhesion of particles to fabric was smaller as shown in the correlation between the adsorption of surfactants on fiber substrate and the adhesion of particles on fabric. However, the correlation between the adhesion of particles to fabric and the stability of particle dispersion was relatively more significant.

  • PDF

Effect of the particle size on the electrical contact in selective electro-deposition of copper (구리의 선택적 전착에서 결정 입자의 크기가 전기적 접촉성에 미치는 영향)

  • Hwang, Kyu-Ho;Lee, Kyung-Il;Joo, Seung-Ki;Kang, Tak
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.79-93
    • /
    • 1991
  • With the advent of ULSI, many problems in previous metallization techniques and interconnection materials have become more serious. In this work, selective deposition of copper to fill the submicron contact has been tried. After forming electro-deposited copper films on p-type (100) silicon wafer using 0.75M $CuSO_4{\cdot}$5H_2O$ as an electrolyte, the effect of deposition time, current density and concentration of an additive on film properties were investigated. Film thickness, particle size and resistivity were analyzed by Alpha Step, SEM and 4 - point probe measurement respectively. The deposition rate was about $0.5-0.6\mu\textrm{m}$/min at $2A/dm^2$ and the particle size increased with increasing current density. The resistivities of electro-deposited copper films were about $3-6{\mu}{\Omega}{\cdot}$cm for the particle size above $4000{\AA}$. By the addition of 0.2 g/l gelatin, the particle size was reduced to less than $0.1{\mu}m $ and selective plugging of copper on submicron contacts could be successfully achieved.

  • PDF

Comparison of the Kinetic Behaviors of Fe2O3 Spherical Submicron Clusters and Fe2O3 Fine Powder Catalysts for CO Oxidation

  • Yoo, Seung-Gyun;Kim, Jin-Hoon;Kim, Un-Ho;Jung, Jin-Seung;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1379-1384
    • /
    • 2014
  • ${\alpha}-Fe_2O_3$ spherical particles having an average diameter of ca. 420 nm and ${\alpha}-Fe_2O_3$ fine particles (< 10 ${\mu}m$ particle size) were prepared to examine as catalysts for CO oxidation. Kinetic studies on the catalytic reactions were performed in a flow reactor using an on-line gas chromatography system operated at 1 atm. The apparent activation energies and the partial orders with respect to CO and $O_2$ were determined from the rates of CO disappearance in the reaction stage showing a constant catalytic activity. In the temperature range of $150-275^{\circ}C$, the apparent activation energies were calculated to be 13.7 kcal/mol on the ${\alpha}-Fe_2O_3$ spherical submicron clusters and 15.0 kcal/mol on the ${\alpha}-Fe_2O_3$ fine powder. The Pco and $Po_2$ dependencies of rate were investigated at various partial pressures of CO and $O_2$ at $250^{\circ}C$. Zero-order kinetics were observed for $O_2$ on both the catalysts, but the reaction order for CO was observed as first-order on the ${\alpha}-Fe_2O_3$ fine powder and 0.75-order on the ${\alpha}-Fe_2O_3$ spherical submicron clusters. The catalytic processes including the inhibition process by $CO_2$ on the ${\alpha}-Fe_2O_3$ spherical submicron powder are discussed according to the kinetic results. The catalysts were characterized using XRD (X-ray powder diffraction), FE-SEM (field emission-scanning electron microscopy), HR-TEM (high resolution-transmission electron microscopy), and $N_2$ sorption measurements.