• Title/Summary/Keyword: Alloys

Search Result 4,352, Processing Time 0.034 seconds

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of HCC AZ31 Alloy Plate (압연조건에 따른 AZ31 연주판재의 미세조직 및 기계적 특성 변화)

  • Kim, Young Min;Chun, Eun Young;Yim, Chang Dong;You, Bong Sun;Lee, Je-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The changes in microstructure and mechanical properties of AZ31 alloy subjected hot-rolling process were investigated. The AZ31 plates fabricated by horizontal continuous casting process were prepared and have hot-rolled from 30 mm to 1 mm in thickness under different processing conditions. At the rolling temperature of $400^{\circ}C$, little surface and side crack was observed up to 20% reduction rate. As total reduction and reduction rate increase to more than 75% and 20% pass, respectively, Grains were more uniformly refined through overall thickness, and particularly lots of shear bands were appeared to be inclined at less than $20^{\circ}C$ along the rolling direction. Average grain size of less than $5{\mu}m$ and tensile properties of YS ${\geq}$ 250 MPa, UTS ${\geq}$ 300 MPa and El. ${\geq}$ 13% were acquired for hot-rolled AZ31 sheets without post-heat treatment. Maximum intensity of (0002) pole figure was decreased with an increase in reduction rate, indicating the improvement of texture by means of high reduction rate.

High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel (고질소 2상 스테인리스강의 고온 석출거동)

  • Bae, Jong-In;Kim, Sung-Tae;Lee, Tae-Ho;Ha, Heon-Young;Kim, Sung-Joon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성)

  • Hong, Won Sik;Oh, Chul Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test (초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가)

  • Lee, Sung Sik;Oh, Yong Jun;Nam, Soo Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

Microstructures and Hardness of CO2 Laser Welds in 409L Ferritic Stainless Steel (409L 페라이트계 스테인리스강 CO2레이저 용접부의 미세조직과 경도)

  • Kong, Jong Pan;Park, Tae Jun;Na, Hye Sung;Uhm, Sang Ho;Kim, Jeong Kil;Woo, In Su;Lee, Jong Sub;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • The microstructure and hardness of $CO_2$ laser welds were investigated in the Ti-stabilized ferritic stainless steel 409L. The observed specimen was welded in a fully penetrated condition in which the power was 5 kW and the welding speed 5 m/min. The grain structure near the bond line of the laser welds was produced by epitaxial growth. The grain size was the largest in the fusion zone, and HAZ showed nearly the same grain size as that of the base metal. The HAZ microstructure consisted of subgrains and precipitates that were less than 100 nm in size and that were located along the subgrain boundaries. On the other hand, the hardness was the highest in the fusion zone due to the large amount of small precipitates present. These were composed of TiN, Ti(C,N) and $TiO_2$+Ti(C,N). The hardness decreased continuously from the fusion zone of the base metal. The HAZ hardness was slightly greater than that of the base metal due to the existence of subgrains and precipitates in the subgrain boundary.

Electrical Properties of Chip Typed Shunt Resistor Composed of Carbon Nanotube and Metal Alloy for the Use of DC Current Measurement (DC 전류 측정을 위한 탄소나노튜브와 합금으로 구성된 칩 타입 션트저항체의 전기적 특성)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • We fabricated plate typed shunt resistors composed of carbon nanotube (CNT) and metal alloy for measuring DC current. CNT plates were prepared from dispersed CNT/Urethane solution by squeezing method. Cu/Ni alloys were prepared from composition-designed alloy wires for adjusting the temperature coefficient of resistance (TCR) by pressing them. As well, we fabricated a hybrid resistor by squeezing the CNT/Urethane solution on the metal alloy plate directly. In order to confirm the composition ratio of the Cu/Ni alloy, we used an energy-dispersed X-ray spectroscopy (EDX). Cross-section and surface morphology were analyzed by using a scanning electron microscopy (SEM). Finally, we measured the initial resistance of 2.35 Ω at 25℃ for the CNT paper resistor, 7.56 mΩ for the alloy resistor, and 7.38 mΩ for the hybrid resistor. The TCR was also measured to be -778.72 ppm/℃ at the temperature range between 25℃ to 125℃ for the CNT paper resistor, 824.06 ppm/℃ for the alloy resistor, and 17.61 ppm/℃ for the hybrid resistor. Some of the hybrid resistors showed a near-zero TCR of 1.38, -2.77, 2.66, and 5.49 ppm/℃, which might be the world best-value ever reported. Consequently, we could expect an error-free measurement of the DC current using this resistor.

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy (철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghun;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

Measurement Method of Prior Austenite Grain Size of Nb-added Fe-based Alloys (Nb 첨가 철계 합금의 Prior austenite 결정립크기 측정 방법)

  • Ko, Kwang Kyu;Bae, Hyo Ju;Jung, Sin Woo;Sung, Hyo Kyung;Kim, Jung Gi;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.317-324
    • /
    • 2021
  • High-strength low-alloy (HSLA) steels show excellent toughness when trace amounts of transition elements are added. In steels, prior austenite grain size (PAGS), which is often determined by the number of added elements, is a critical factor in determining the mechanical properties of the material. In this study, we used two etching methods to measure and compare the PAGS of specimens with bainitic HSLA steels having different Nb contents These two methods were nital etching and picric acid etching. Both methods confirmed that the sample with high Nb content exhibited smaller PAGS than its low Nb counterpart because of Nb's ability to hinder austenite recrystallization at high temperatures. Although both etching approaches are beneficial to PAGS estimation, the picric acid etching method has the advantage of enabling observation of the interface containing Nb precipitate. By contrast, the nital etching method has the advantage of a very short etching time (5 s) in determining the PAGS, with the picric acid etching method being considerably longer (5 h).