Effect of Rolling Conditions on Microstructure and Mechanical Properties of HCC AZ31 Alloy Plate

압연조건에 따른 AZ31 연주판재의 미세조직 및 기계적 특성 변화

  • Kim, Young Min (Light Metals Research Group, Korea Institute of Materials Science) ;
  • Chun, Eun Young (Dept. of Metallurgy & Materials Engineering, Changwon University) ;
  • Yim, Chang Dong (Light Metals Research Group, Korea Institute of Materials Science) ;
  • You, Bong Sun (Light Metals Research Group, Korea Institute of Materials Science) ;
  • Lee, Je-hyun (Dept. of Metallurgy & Materials Engineering, Changwon University)
  • 김영민 (재료연구소 경량재료연구그룹) ;
  • 천은영 (창원대학교 재료공학과) ;
  • 임창동 (재료연구소 경량재료연구그룹) ;
  • 유봉선 (재료연구소 경량재료연구그룹) ;
  • 이재현 (창원대학교 재료공학과)
  • Received : 2008.01.10
  • Published : 2008.04.22

Abstract

The changes in microstructure and mechanical properties of AZ31 alloy subjected hot-rolling process were investigated. The AZ31 plates fabricated by horizontal continuous casting process were prepared and have hot-rolled from 30 mm to 1 mm in thickness under different processing conditions. At the rolling temperature of $400^{\circ}C$, little surface and side crack was observed up to 20% reduction rate. As total reduction and reduction rate increase to more than 75% and 20% pass, respectively, Grains were more uniformly refined through overall thickness, and particularly lots of shear bands were appeared to be inclined at less than $20^{\circ}C$ along the rolling direction. Average grain size of less than $5{\mu}m$ and tensile properties of YS ${\geq}$ 250 MPa, UTS ${\geq}$ 300 MPa and El. ${\geq}$ 13% were acquired for hot-rolled AZ31 sheets without post-heat treatment. Maximum intensity of (0002) pole figure was decreased with an increase in reduction rate, indicating the improvement of texture by means of high reduction rate.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A302, 37 (2001)
  2. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa and K. Higashi, Mater. Sci. Eng. A290, 139 (2000)
  3. U. Holzkamp, H. Haferkamp and M. Niemeyer, Magnesium Alloys and their Applications, K.U. Kainer (Ed.), p.564-570, Wiley-VCH, Weinheim, Germany, (2000)
  4. B. S. Shin, Y. Kim and D. H. Hae, J. Kor. Met. & Mater. 46, 1 (2008)
  5. C. D. Yim, B. S. You, S. H. Kim, J. S. Lee and W. C. Kim, J. Kor. Inst. Met. & Mater. 42, 521 (2004)
  6. S. S. Park, G. T. Bae, D. H. Kang, I. H. Jung, K. S. Shin and Nack J. Kim, Scripta Mater. 57, 793 (2007) https://doi.org/10.1016/j.scriptamat.2007.07.013
  7. E. I. Marukovich, A. M. Branovitsky, Y. S. Na, J. H. Lee and K. Y. Choi, Materials and Design 27, 1016 (2006) https://doi.org/10.1016/j.matdes.2005.02.007
  8. B. S. You, C. D. Yim and S. H. Kim, Mater. Sci. Eng., A413-414, 139 (2005)
  9. D. J. Monaghan, M. B. Henderson, J. D. Hunt and D. V. Edmonds, Mater. Sci. Eng. A173, 251 (1993)
  10. B. H. Lee, B. D. You, M. S. Kim, I. K. Jung and H. R. Yoon, J. Kor. Inst. of Met. & Mater. 36, 1195 (1998)
  11. D. H. Kam, H. K. Lee, J. W. Han and B. D. You, Metals and Materials Int. 8, 535 (2002)
  12. C. S. Lee and B. J. Duggan, Acta Metall. Mater. 42, 857 (1994) https://doi.org/10.1016/0956-7151(94)90280-1
  13. R. J. Clifton, J. Duffy, K. A. Hartley and T. G. Shawki, Scripta Metall. 18, 443 (1984) https://doi.org/10.1016/0036-9748(84)90418-6
  14. M. Hatherly and A.S. Malin, Scripta Metall. 18, 449 (1984) https://doi.org/10.1016/0036-9748(84)90419-8
  15. Olaf Engler, Scripta Mater. 44, 229 (2001) https://doi.org/10.1016/S1359-6462(00)00597-2
  16. M. Koizumi and H. Inagaki, Met. & Mater 5, 511 (1999) https://doi.org/10.1007/BF03026297
  17. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, J. Alloys Compd. (2007), doi:10.1016/j.jallcom.2007. 02.144