• Title/Summary/Keyword: Alloying element

Search Result 171, Processing Time 0.028 seconds

Effects of Alloying Elements on the Mechanical Properties of Normalized and Quenched 3.60wt%C-2.60wt%Si Ductile Cast Irons Poured into Shell Stack Mold (쉘 스택 주조 3.60wt%C-2.60wt%Si 조성 구상흑연주철의 Normalizing 및 Quenching 처리 시 기계적 성질에 미치는 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Hae-Wook;Yeo, In-Dong;Nam, Won-Sick
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • The effects of alloying elements on the mechanical properties of normalized and quenched 3.60wt%C-2.60wt%C ductile cast iron poured into shell stack mold were investigated. The strength and hardness of as-cast specimen were increased and the elongation of it was decreased with the additions of Mn, Cu and Sn. The strength and hardness were increased with the addition of 0.40wt%Mo and then rather decreased with the increased addition of 0.80wt%. The strength and hardness were increased with normalizing treatment and the strengths of normalized specimens were increased slightly with the addition of alloying elements except Mo. Meanwhile the yield strength of the normalized specimen was increased slightly with the addition of Mo, the tensile strength was not changed much. Meanwhile the hardness and strength of the quenched specimen were slightly increased with the addition of Mn, those were almost not changed with the amount added. The tensile strength of the quenched specimen with larger diameter, when the Cu had been added, and the tensile and yield strengths of them, when Mo had been added, were increased with the addition of alloying element. On the other hand, those were not changed with the amount added. For the case of specimen with smaller diameter, there were no effects of these two elements. When Sn had been added, the strength of hardened specimen with larger diameter was slightly increased with the amount added. However, that with smaller diameter was rather decreased with it. The effect of specimen diameter on the strength of quenched specimen with the addition of Cu, Mo and Sn was reduced.

Effect of Alloying Element Addition on the Microstructure and Wear Properties of Die-casting ADC12 Alloy (ADC12 다이캐스팅 합금의 미세조직 및 기계적 특성에 미치는 개량 원소 첨가의 영향)

  • Kang, Y.J.;Yoon, S.I.;Kim, D.H.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, various alloying elements (Cr, Sr, Ca, Cd) were added to improve the mechanical properties of ADC12 fabricated by a die casting process. The effect of alloying elements on the microstructure and mechanical properties were investigated. The phase analysis results of the modified ADC12 alloy with conventional ADC12 alloy, showed the similar characteristics of Al matrix, Si phase, $CuAl_2$ phase and the Fe intermetallic phase. As a result of the microstructure observation, the secondary dendrite arm spacing (SDAS) was shown to have decreased after the addition of the alloying elements. The eutectic Si phase, which existed as flake form in the conventional ADC12 alloy, was modified finely as a fiber form in the modified ADC12 alloy. It was observed that the $CuAl_2$ phase as the strengthening phase was relatively finely distributed in the modified ADC12 alloy. The Fe intermetallic appeared as a Chinese script shaped $Al_6$ (Mn,Fe) which is detrimental to mechanical properties in conventional ADC12 alloy. On the other hand, in the modified ADC12 alloy, polyhedral ${\alpha}-Al_{15}Si_2$ $(Fe,Mn,Cr)_3$ was observed. The tensile properties were improved in the modified ADC12 alloy. The yield strength and tensile strength increased by 12.4% and 10.0%, respectively, in the modified ADC12 alloy, and the elongation was also seen to have been increased. As a result of the pin on disk wear test, the wear resistance properties were also improved by up to about 7% in the modified ADC12 alloy. It is noted that the wear deformation microstructures were also observed, and it was found that the fine eutectic Si and strengthening phases greatly improved abrasion resistance.

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

The Effect of Alloying Elements and Heat Treatment on the Uniform Corrosion of 440A Martensitic Stainless Steel(I) (440A 강의 균일부식에 미치는 합금원소와 열처리의 영향(I))

  • Kim, Y.C.;Kang, C.Y.;Jung, B.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2011
  • 440A martensitic stainless steels which were modified with reduced carbon content(~0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and tempering temperatures on the uniform corrosion in the solution of lN H2S04 were investigated through the electrochemical polarization test. When tempering temperature is constant, corrosion current density in active-passive transition point, Icorr, decreased a little with an increase of austenitizing temperature. In addition to this, when austenitizing temperature is constant, longer holding time showed a little lower Icorr and Ipass, passive current density. And when austenitized at $1050^{\circ}C$ and tempered in a range of $350{\sim}750^{\circ}C$, best anti-corrosion properties were obtained at $350^{\circ}C$ tempering temperature while worst at $450^{\circ}C$ or $550^{\circ}C$. The specimens tempered at below $450^{\circ}C$ and above $550^{\circ}C$, similar and good anti-corrosion characteristics were obtained regardless of alloying elements added, showing anti-corrosion characteristics are influenced more by tempering temperature than by alloying elements.

Effects of Risering Design and Alloying Element on Formation of Shrinkage Cavity in Ductile Cast Iron (구상흑연주철의 수축결함생성에 미치는 주조방안 및 합금원소의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • The effects of risering design and alloying element on the formation of defects such as external depression, primary and secondary shrinkage cavities in ductile cast iron were investigated. Two types of risering design for the cylindrically step-wise specimen, No. 1(progressive solidification) and No. 2(directional solidification) risering designs, were prepared and six different alloy compositions were casted. In the No. 1 risering design, external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. The defects caused by liquid contraction seemed to be more affected by risering design than alloying elements. The secondary shrinkage cavities were also observed in all the specimens but a swollen surface was not observed in all the castings. The primary shrinkage cavities were located right under the top surface or connected to the top surface, and were characterized by smooth surfaces. On the other hand, the secondary shrinkage cavities were positioned in the thermal center of the specimen steps 3 and 4, and characterized by rough surfaces. In the No. 2 risering design, no external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. However, the secondary shrinkage cavities were formed in the thermal center of specimens SG 40, 50 and 60. Like the No. 1 risering design, a swollen surface was not observed in all the castings.

Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape (고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

Chemical Compositio and Structure of Evaporated Alloying Element by Laser Welding Condition (레이저 용접조건에 따른 증발된 합금원소의 조성과 구조의 변화)

  • 조상명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.523-532
    • /
    • 1999
  • This study is aimed to obtain fundamental knowledge of pulse laser welding phenomena the authors investigated the structure and composition of evaporated particles of Al alloys in air and in the Ar atmosphere during pulsed laser welding. The ultra-fine particles of 5 to 100nm diameter in a globular or irregular shape were formed in laser-induced plasma and the main structure was $MgAl_2O_4$ The composition of particles was ifferent depending on the power density of a laser beam; namely under the low power density conditions magnesium was predominant in the parti-cles while aluminium content increased with an increase in the power density. These results were attributed to evaporation phenomena of metals with different boiling points and latent heats of vaporization. On the other hand the number density of laser-induced plasma species was obtained by Saha's equation. it was confirmed that the number density depends upon the plasma tempera-ture and total pressures.

  • PDF

Synthesis of Al/AlN Composites by Mechanical Alloying and the Effect of PCA on Their Properties (기계적 합금화법에 의한 Al/AlN 복합체 제조 및 PCA 영향)

  • Kim, Seok-Hyeoun;Kim, Yong-Jin;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, $C_8H_6N_4O_5$ was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.