• Title/Summary/Keyword: Alloy formation

Search Result 993, Processing Time 0.025 seconds

The Study on Material Characteristics of the By-Products of the Production of Bronze during the Goryeo Dynasty Excavated from the Sinpung Site, Wanju, Jeollabuk-do, South Korea (완주 신풍유적 출토 고려시대 청동생산 부산물의 재료학적 특성)

  • Choi, Nam Young;Cho, Nam Chul;Kang, Beoung Sun
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.392-402
    • /
    • 2019
  • This study interpreted the characteristics of the site and provenance of raw material by performing material characteristics analysis of the slags and tuyeres excavated from the Sinpung site in Wanju, Jeollabuk-do. The major chemical compositions suggested that the slags and tuyeres were created when Cu-Sn-Pb was alloyed. Metal microscope and scanning electron microscopy-energy dispersive spectrometer analyses revealed that the slags and tuyeres were by-products formed in the alloying process. This alloy, created by adding galena to copper and tin ingots, was an intermediary material used in making the finished products. According to the lead isotope ratio analysis result, slags could be made using galena of the southern Zone III region of Korea. Based on the decomposition of mica group minerals and the formation of mullite detected through X-ray diffraction analysis, it is possible to conclude that the tuyeres operated at approximately 1,000℃ as, the mullite was detected on the outside of the tuyeres.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Size Control of Nd-Fe-B Precursor Particles Prepared by Spray Drying and Its Effect on the Magnetic Properties of Nd-Fe-B Alloy Powders after Reduction-Diffusion (분무건조된 Nd-Fe-B 전구체 입자의 크기조절 및 환원-확산 후 자기 특성에 미치는 영향)

  • Baek, Youn-Kyoung;Seo, Young-Taek;Lee, Jung-Goo;Kim, Dong Su;Bae, Dong Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • In this study, we fabricated $Nd_2Fe_{14}B$ hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of $Nd_2Fe_{14}B$. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentrations of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to control the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of $Nd_2Fe_{14}B$ phase and magnetic properties was investigated.

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying (기계적합금화한 (Al +12.5%Cu)3Zr 초미립 금속간화합물의 CIP 성형 및 소결 거동)

  • Moon, H.G.;Hong, K.T.;Kim, S.J.
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.

NiAl/Y Coating Process for Corrosion Resistance of Wet-seal area in MCFC (MCFC용 wet-seal부의 내식성 향상을 위한 NiAl/Y 피복 공정에 관한 연구)

  • Choe, Jae-Ung;Gang, Seong-Gun;Song, Sang-Bin;Hwang, Eung-Rim
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.666-670
    • /
    • 2001
  • To improve the corrosion resistance of separator wet-seal area which is the barrier of commercialization of molten carbonate fuel cell(MCFC), Ni/Y/Al coating layer was fabricated by Ni electroplating and Y, Al e-beam PVD on AISI 316L stainless steel. NiAlY alloy coating layer was formed by heat treatment in reduction atmosphere at $800^{\circ}C$ for 5hr. Immersion test in molten carbonate salt at $650^{\circ}C$ was performed on as- received AISI 316L stainless steel and NiAlY coated specimen. According to cross sectional SEM/EDS observations, corrosion resistance of separator wet-seal area was improved by formation of dense oxide layers of Al and Y.

  • PDF

Fabrication of nonequilibrium alloy powders in immiscible Cu-Nb system by mechanical alloying (기계적 합금화에 의한 비고용 Cu-Nb계 비평형 합금의 제조)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.210-215
    • /
    • 2006
  • Mechanical alloying (MA) by high energy ball mill of pure copper and niobium powders was carried out under the Ar gas atmosphere. The supersaturated solid solution can be produced in the range up to $Cu_xNb_{100-x}$(x=5-30) by MA for 120 hrs, as demonstrated by X-ray diffraction, DSC analysis and the electronic studies through a change in the superconducting transition in the low-temperature specific heat. The $Cu_{30}Nb_{70}$ samples ball-milled for 120 hrs exhibit only a broad exothermic heat release. The total energy, ${\Delta}H_t$ accumulated during MA far the mixture of $Cu_{30}Nb_{70}$ powders increased with milling time and approached the saturation value of 7.5 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the supersaturated solid solution and the mixture of $Cu_{30}Nb_{70}$ powders is estimated to be 7 kJ/mol by Miedema et al. Hence it is thermodynamically possible to assume the formation of a supersaturated solid solution phase in this system.

Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst (활성탄 담지 몰리브덴 촉매를 이용한 합성가스 직접 메탄화 반응)

  • KIM, SEONG-SOO;LEE, SEUNG-JAE;PARK, SUNG-YOUL;KIM, JIN-GUL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.419-428
    • /
    • 2020
  • The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.

The Spontaneous Infiltration Mechanism of Molten Al Alloy to AI$_2$O$_3$ Preform (AI$_2$O$_3$ Preform에 대한 용융 Al 합금의 자발적 침윤 기구)

  • 이동윤;박상환;이동복
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.685-690
    • /
    • 1998
  • The wetting behavior and the characteristic of spontaneous infiltration of pure Al and Al-(Si)-Mg alloys on {{{{ { {Al }_{ 2} O}_{3 } }} in vacuum argon and nitrogen atmosphere were investigated to find out the spontaneous in-filtration mechanism. The wetting of molten Al and Al alloys on {{{{ { {Al }_{ 2} O}_{3 } }} was only possible in cacuum at-mosphere but the sponataneous infiltration of molten Al-(Si)-Mg alloys was successfully made on {{{{ { {Al }_{ 2} O}_{3 } }} pre-form in nitrogen atmoshpere. The difference of wettability and spontaneous infiltration of molten Al and Al alloys on {{{{ { {Al }_{ 2} O}_{3 } }} were found to be related to formation of the Mg-N compound coated layer on {{{{ { {Al }_{ 2} O}_{3 } }} particles which was believd to increase wettability of molten Al alloys on {{{{ { {Al }_{ 2} O}_{3 }.

  • PDF

Wafer-Level MEMS Capping Process using Electrodeposition of Ni Cap and Debonding with SnBi Solder Layer (Ni 캡의 전기도금 및 SnBi 솔더 Debonding을 이용한 웨이퍼 레벨 MEMS Capping 공정)

  • Choi, J.Y.;Lee, J.H.;Moon, J.T.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.23-28
    • /
    • 2009
  • We investigated the wafer-level MEMS capping process for which cavity formation in Si wafer was not required. Ni caps were formed by electrodeposition on 4" Si wafer and Ni rims of the Ni caps were bonded to the Cu rims of bottom Si wafer by using epoxy. Then, top Si wafer was debonded from the Ni cap structures by using SnBi layer of low melting temperature. As-evaporated SnBi layer was composed of double layers of Bi and Sn due to the large difference in vapor pressures of Bi and Sn. With keeping the as-evaporated SnBi layer at $150^{\circ}C$ for more than 15 sec, SnBi alloy composed of eutectic phase and Bi-rich $\beta$ phase was formed by interdiffusion of Sn and Bi. Debonding between top Si wafer and Ni cap structures was accomplished by melting of the SnBi layer at $150^{\circ}C$.

  • PDF

Aging of Solid Fuels Composed of Zr and ZrNi Part 1: Thermal/Chemical/Spectroscopic Analysis (Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 1: 열/화학/분광학적 분석)

  • Han, Byungheon;Ryu, Jihoon;Yang, Junho;Oh, Juyoung;Gnanaprakash, K.;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The characterization of aging of the pyrotechnic device is conducted thermally, chemically, and spectroscopically. The device is comprised of two parts: (i) igniter composed of Zr and (ii) pyrotechnic delay composed of ZrNi alloy. The thermally induced chemical reaction is identified through Differential Scanning Calorimetry (DSC) and Thermogravimetry Analysis (TGA). The peak deconvolution of the themo-chemical data is used to estimate the enthalpy change of each metallic fuel component. Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Photoelectron Spectroscopy (XPS) are used for chemical species analysis. The decomposition of oxidants by moisture significantly affected the fuel aging, and the formation of oxide film and metal oxide on the fuel surface gave rise to the thermal energy decrease.