• 제목/요약/키워드: Alloy Ratio

검색결과 761건 처리시간 0.026초

AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향 (Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy)

  • 김귀식;김명근;김현관;김충옥
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.

급속응고한 Ag-Sn-In 합금의 산화반응에 미치는 Sn-In 첨가량 비율에 관한 연구 (The Study of the Sn-In Ratio on the Oxidation Reaction of Rapidly Solidified Ag-Sn-In Alloys)

  • 장대정;권기봉;조대형;김정수;남태운
    • 한국주조공학회지
    • /
    • 제27권2호
    • /
    • pp.72-76
    • /
    • 2007
  • Contact materials are widely used as electrical parts. Ag-Cd alloy has a good wear resistance and stable contact resistance. But the Cd exists as coarse oxide in alloy so it have an effect on mechanical properties badly. Moreover, the Cd is an injury material to environment. Nowadays, the use of Cd is strictly restricted. Because of these disadvantage, Ag-Sn-In alloy has been developed. In Ag-Sn-In alloy, the Sn : In ratio affects the internal oxidation properties, such as the formation of the oxide layer on the surface. In this work, we changed and optimized the Sn : In ratio variety for good internal oxidation properties. We have shown that a internal oxidation process did not fully completed when the Sn : In ratio is over 4 : 1 because of the Sn oxide layer at surface. The increase of In decelerates the formation of Sn oxide layer.

Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향 (Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy)

  • 김경현;김정대;김인배
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

Al-Li-( Cu, Zr) 합금에서 시효에 따른 δ' 상의 형상 및 입자크기분포의 변화 (The Changes of the Shape and Particle Size Distribution of δ' Phase on Ageing in Al-Li-( Cu, Zr) Alloys)

  • 우기도;조현기
    • 열처리공학회지
    • /
    • 제7권2호
    • /
    • pp.96-102
    • /
    • 1994
  • The present work was aimed to examine the changes of the shape and particle size distribution(PSD) of ${\delta}^{\prime}$ particles on ageing in Al-Li-(Cu, Zr) alloys which had low density, high specific strength and stiffness, Increasing ageing time and temperature resulted in particles whose aspect ratio tended toward 1. The aspect ratio of ${\delta}^{\prime}$ particles was not dependent upon the ageing temperature and time in Al-Li-Cu alloy but was dependent upon them in Al-Li-Zr alloy. The PSD of ${\delta}^{\prime}$ particles in Al-Li-Zr alloy skewed to the right hand compared with that in Al-Li-Cu alloy, because $Al_3Zr$ phase in Al-Li-Zr alloy formed before ageing promoted the precipitation and growth of ${\delta}^{\prime}$ phase. Therefore, the PSD of the ${\delta}^{\prime}$ particles was found to be affected by the presence of $Al_3Zr$ particles. The growth rate of ${\delta}^{\prime}$ phase was not affected by the existence of the third transition phase $T_1$ formed by the addition of Cu in Al-Li alloy but was affected by the existence of $Al_3Zr$ formed by the addition of Zr in Al-Li alloy.

  • PDF

구리합금그물감의 공극률 및 영각에 의한 유속 감소와 유체역학적 특성에 관한 연구 (A study on flow velocity reduction and hydrodynamic characteristics of copper alloy netting by solidity ratios and attack angles)

  • 강아림;이지훈
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.62-73
    • /
    • 2019
  • Recently, copper alloy netting has been proposed as a material for aquaculture facilities that can be set in harsh offshore environments. To design a cage made of copper alloy netting, it is necessary to calculate the flow of water through the netting and force of external sources on the netting. Therefore, this study measured and analyzed the current velocity reduction after passing through the netting and the hydrodynamic forces acting on the netting using copper alloy netting with nine solidity ratios. As a result of the reduction rate of the flow velocity through the netting, the flow reduction rate was increased as the solidity ratio of netting was increased. The flow reduction rate was also increased as the attack angle on the netting was decreased. In analyzing the resistance on the netting, we also discovered that resistance was increased with increase in the flow velocity and solidity ratio. An analysis of the hydrodynamic coefficient acting on the netting is shown that the drag coefficient tends to increase as the attack angle increases. We also analyzed the hydrodynamic coefficient according to the variation of the Reynolds number. When the drag coefficients acting on the netting were analyzed with the different Reynolds numbers, the Reynolds number increased from over 0.3 m/s to a relative constant. Finally, the copper alloy nettings had a smaller velocity reduction rate when comparing the flow velocity reduction rate between copper alloy nettings and nylon nettings.

NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과 (The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam)

  • 조현기;신동요;안효진
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구 (A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet)

  • 손영기;정동원
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구 (Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy)

  • 주영철;송오성
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.

반응고 A356 합금의 재가열 특성 및 반용융 압출 (Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy)

  • 김대환;정현주;심성용;임수근;이상용
    • 한국주조공학회지
    • /
    • 제34권4호
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질 (Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster)

  • 나혜진;이경철;유은아;정강섭
    • 대한화학회지
    • /
    • 제47권4호
    • /
    • pp.315-324
    • /
    • 2003
  • 유기용매인 클로로포름 매질에서 소수성의 합금 나노 미립자를 만드는 새로운 방법에 대해 연구하였다. 소수성 합금 나노 미립자들은 계면활성제(sodium bis(2-ethyl hexyl)-sulfosuccinate, NaAOT)를 포함한 클로로포름 용액에 금속염 즉, $HAuCl_4,\AgNO_3,\Cu(NO_3)_2$을 사용하여 합금의 조성을 조절하여 혼합한 후 sodium borohydride $(NaBH_4)$로 환원시켜 합성하였다. Au/Ag, Au/Cu 합금 나노 미립자의 조성은 1:3, 1:1, 3:1의 몰비로 변화시키면서 합성하였다. UV/Visible, TEM, XPS를 사용하여 합금 나노 미립자의 특성을 측정하였다. Au/Cu 합금 나노 미립자의 표면 공명 흡수는 순수한 금인 경우의 최대흡수 파장인 520 nm에서 순수한 구리의 표면 공명 흡수인 570 nm까지 선형적으로 변하였고, Au/Ag 합금 나노 미립자는 순수한 은의 최대흡수 파장인 405 nm에서 순수한 금의 경우인 520 nm까지 선형적으로 변하였다. 합금 나노 미립자의 Au4f, Ag3d, Cu2p 전자의 구속 에너지는 합금의 조성 비율에 따라 달라지게 된다. 합성된 합금 나노 미립자들은 매우 균일하고 장시간 안정한 분산상태를 유지하였다. 이러한 결과로부터 본 연구에서 사용한 방법은 소수성의 합금 나노 미립자를 합성하는데 매우 효과적인 방법이라고 사료된다.