• Title/Summary/Keyword: Allowable stress

Search Result 581, Processing Time 0.026 seconds

A Control Value Analysis on the Axial Force of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 축력에 대한 관리기준치 분석)

  • Jung, Sang-Kug;Lee, Kwang-Chan;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.171-180
    • /
    • 2000
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrumentation values of the whole excavation depth of the four case sites using geometric averaging as a statistical method. The range of the study is confined to three things: (1) the axial force of the braced excavation walls among a variety of items prescribed in the control values by stress deformation of walls and adjacent structures; (2) by approximation of the allowable and design value; (3) and by safety factor. As a res it is desirable to revise "(Long term allowable stress + Short term allowable stress)/2 ~ Short term allowable stress," presented in the present control values by stress deformation of walls and adjacent structures, to "(Long term allowable stress + Short term allowable stress)/5 ~ (Short term allowable stress)/3." The result also shows that since there is a difference of about 3.5%, it is not necessary to revise 70, 90, and 100 percent of LEVEL I, II, and III, prescribed in the control values by the allowable and design value approximation. In addition, modifying the control value by the safety factor, now 1.07, is unnecessary, although it varies little difference from the present value.

  • PDF

Allowable Stress Calculation of Domestic Japanese Larch Small Diameter Lumbers (국내산 낙엽송 소경각재의 허용응력 산출)

  • Kim, Yun-Hui;Shin, Il-Joong;Yang, Jung-Mo;Jang, Sang-Sik
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.214-221
    • /
    • 2012
  • Sustainable energy consumption and increasing $CO_2$ emissions stimulate Eco-friendly industry. Wood has positive various properties as alternative energy such as solar, wind and water. Wood provide lumber, pallet, paper, pulp and fuel through production process. Even Korea republic has 63.7% of forest rates, weather condition makes low forestry production capacity. For utilization of domestic small diameter log needs study mechanical properties. In this study, various properties tested on domestic Japanese Larch small diameter lumbers and make mechanical properties table for allowable stress calculation. Result of compressive test, allowable compressive stress is 13 MPa. Allowable bending stress is 12 MPa.

  • PDF

Review of Visual Grading and Allowable Stress Determination Methodologies for Domestic Softwood (국산 침엽수재의 육안 등급구분방법 및 허용응력설정에 관한 총설)

  • Kong, Jin Hyuk;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • The goal of this study was to review the visual grading and allowable stress determination methodologies for the domestic softwood. Previous studies used different grading (KFRI 1995-27, KFRI 2000-39, KFRI 2007-3, KFRI 2009-1) and allowable stress determination methodologies (ASTM D 245, KS F 2152, JAS 1990). The results of the visual grading were different by each researcher. Compared to the $1^{st}$ grade proportion from the previous studies using the previous specification on visual grading (KFRI 1995-2007), a higher $1^{st}$ grade proportion was found from the studies using the current specification (KFRI 2009). Compared to the allowable stress values from the small clear sample, the higher allowable stress values from the structural size were found. The results indicated that the strength reduction factor used in small clear sample was too conservative for the different grades. To obtain consistent results for the grade, it is required to have experts in visual grading and authorized organizations. An official standard methodology for the allowable stress value determination needs to be defined for the reliable stress value.

Reliability of Machine Elements Based on Static and Dynamic Factor of Allowable Safety under Fluctuating Load (변동하중을 받는 기계요소의 정 .동적 허용안전계수를 고려한 신뢰성)

  • 양성모;김강희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.475-480
    • /
    • 1997
  • It is common to assum identical allowable safety factors in static strength, defined by mean stress and in fatigue, defined by stress amplitude. Under the load with asymmetrical cycles the safety factor is not the same. In this paper, with the consideration of unequal allowable safety factors a general method for estimating fatigue reliability of a machine element under a combined state of stress is derived based on the theory proposed by Prof. Kececioglu and normal distribution. The calculation of fatigue reliability for limited life is discussed with example.

  • PDF

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

Experimental Study on Pre-Stresses Steel Beam (Pre-stress를 도입한 Steel Beam에 관한 실험적 연구)

  • 조진구;박병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3921-3930
    • /
    • 1975
  • This research was carried out to investigate several mechanical characteristics of pre-stressed steel beams. The configuration of specimens used for this study were as follows; a cover plate having permissible fiber stress of 4,000 kg/$\textrm{cm}^2$ was welded at bottom having the allowable bending stress 2500 kg/$\textrm{cm}^2$ steel beam, the section ratios of pre-stressed steel beam and cover plate were 0.5 and 0.6. Adopted pre-stresses were 0%, 50%, and 100% of an allowable fiber stress of a steel beam. The results obtained from the study may be summarized as follows; 1. The elastic range of a beam was increased by the application of pre-stress to the beam, which leads to a lighter section. 2. The permissible moment capacity of a pre-stressed steel beam was greated than that of a steel beam without pre-stressing. 3. The equivalent allowable stress induced by adopting the different section ratio of pre-stressed beam to cover plate were figured out 4. The optimum value of section ratio of beam and cover plate was 0.3 to 0.4 in case of a 1.5m span composite beam, a combination of an allowable stress 2,500kg/$\textrm{cm}^2$ steel beam and a permissible fiber stress 4,000 kg/$\textrm{cm}^2$ steel cover plate, was used. 5. The magnitude of the pre-stress was desirable to be same as the allowable stress of a steel beam. 6. It was concluded that if the construction techniques in the field are developed and improved, the practicing of pre-stress to the steel structure has a promising future.

  • PDF

Development of a CAD program for optimal design of a cylinderical die with one stress-ring (단일보강링 원통형 금형의 최적 설계용 CAD 프로그램 개발)

  • 신중호;손주리;류갑상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.556-561
    • /
    • 1988
  • Shrink-rings (Stress-rings) are used in the fabrication of dies for cold forming and powder compaction processes to increase the allowable pressures for a given die material. Optimum procedures are to minimize a die thickness under the conditions that the stress distributions in the die and stress-rings utilize fully the strength available in each of the die elements. This paper proposes a new approach, where the maximum allowable shrinking pressures are calculated on shrinkage plans in the radial direction and the fractional shrinking pressures below the maximum allowable pressures are used as the design values. Two criteria for the optimal die design are used: Maximum shear stress limit for one-piece dies and zero tensile stress limit for combined dies. A computer program, DIECOM, is developed for illustrating the computer-aided design procedures. Finally, examples for each case are presented in this paper.

  • PDF

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

A Study the Development of Involute Spur Gears Profiles Strength (인벌류트 스퍼기어 치형 강도에 관한 연구)

  • Cho, Seong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

A New Proposal for the Allowable Local Thickness of Straight Pipes in ASME Code Case N-597-2 (ASME 코드 케이스 N-597-2의 직관 국부허용두께의 새로운 제안)

  • Park, Jai-Hak;Shin, Kyu-In;Park, Chi-Yong;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.13-18
    • /
    • 2007
  • Structural integrity assessment of thin-walled pipes and pipe items has become one of the major issues in the nuclear power plant. ASME Section XI Code Case N-597-2 provides a criterion for acceptance of the pipes. But the code case has several limitations for application and sometimes gives too conservative or non-conservative results. So it is necessary to understand fully the technical bases of the code case. In the code case N-597, the allowable local thicknesses of thinned straight pipes are given for three different cases. Because of the different technical base, each case gives different thickness values and sometimes gives contradictory values. In this paper attempts were made in order to propose a unified rule for the allowable local thickness and in order to remove or relax the restrictions on the application of the code case. For this purpose elastic stress analyses were made using the finite element method and the stress results were examined. Based on the obtained bending stress results, a very simple procedure was proposed to obtain the consistent allowable local thickness for the thinned straight pipes.