• Title/Summary/Keyword: Allowable design values

Search Result 115, Processing Time 0.026 seconds

A study on the establishment of pressure limit values of management monitoring in tunnel (터널 유지관리계측의 압력 관리기준치 설정에 관한 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • This study analyzed a monitoring data, based on the initial limit values of monitoring in subway, of earth pressure and pore water pressure. The data is obtained from 8 sections of the Seoul metropolitan subway line No 6, 7 and 9 in about 5 years. Also, a research is performed to set up the limit values of management monitoring, which will be applied to management monitoring in tunnel, through comparing the limit values of overseas management monitoring data and that of domestic management monitoring data. And the result obtained from comparison show that the safety phase is 60% of allowable pressure, the attention phase is 80% of allowable pressure and the precision analysis phase is 100% of allowable pressure. Also, we presented a method of management monitoring by the absolute value which can be easily applied easily in practical affairs.

A study on the establishment of stress limit values of management monitoring in tunnel (터널 유지관리계측의 응력 관리기준치 설정에 관한 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • This study analyzed a monitoring data, based on the initial limit values of monitoring in subway, of concrete lining stress and reinforcement stress. The data is obtained from 7 sections of the Seoul metropolitan subway line No 6, 7, and 9 in about 5 years. Also, a research is performed to set up the limit values of management monitoring, which will be applied to management monitoring in tunnel, through comparing the limit values of overseas management monitoring data and that of domestic management monitoring data. And the result obtained from comparison shows that the safety phase is 60% of allowable stress, the attention phase is 80% of allowable stress and the precision analysis phase is 100% of allowable stress. Also, we presented a method of management monitoring by the absolute value which can be easily applied in practical affairs.

Optimization of Steel Jacket Subjected to Wave Forces (파랑하중을 받는 Steel Jacket의 최적화에 관한 연구)

  • 장승필;이원표;원종국
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 1990
  • This study is concerned with the optimization of steel jacket subjected to wave forces using the allowable stress design method. The optimization of member section is considered here. Objective function for the minmum cost design is obtained by considering the weight of steel jecket. Constraints are imposed to insure that structural displacement and strength are within allowable values. The nonliner otimization problems are solved by SUMT method including the modified Newton-Raphson method.

  • PDF

Evaluation of internal adaptation of PMMA 3-unit bridge manufactured by 5-axis milling machine (5축 밀링으로 가공한 PMMA 3본 브릿지의 내면 적합도 평가)

  • Kim, Chong-Myeong;Kim, Jae-Hong;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.38 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Purpose: The purpose of this study was to assess the internal fitness of the PMMA 3-unit bridge that was fabricated with 5-axis milling machine and to verify the clinically allowable values. Methods: For fabrication of the crown bridge in this study, 25-27 abutment teeth were used. The prepare abutment teeth were scanned with a scanner and 3-unit bridge was designed by using design software. Upon the completion of the design, the 3-unit bridge was fabricated by using a PMMA block with 5-axis milling machine. The internal surface of the fabricated 3-unit bridge was scanned by using a scanner and the difference between the 3-unit bridge and the abutment teeth was assessed by merging them together. Results: $RMS{\pm}SD$ values for PRE group, MOL group, and BRI group were $51.2{\pm}18.2$, $44.8{\pm}10.0$, and $52.1{\pm}8.3{\mu}m$, respectively. The mean of the PRE group was bigger than that of the MOL and BRI group; however, statistically significant difference was not found (p>0.05). Conclusion: The PMMA 3-unit bridge that was fabricated with 5-axis milling machine presented stable internal values for each crown and overall internal values were within the range of clinically allowable values.

Mooring Cost Sensitivity Study Based on Cost-Optimum Mooring Design

  • Ryu, Sam Sangsoo;Heyl, Caspar;Duggal, Arun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The paper describes results of a sensitivity study on an optimum mooring cost as a function of safety factor and allowable maximum offset of the offshore floating structure by finding the anchor leg component size and the declination angle. A harmony search (HS) based mooring optimization program was developed to conduct the study. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. To find a trend of anchor leg system cost for the proposed sensitivity study, optimum costs after a certain number of improvisation were found and compared. For a case study a turret-moored FPSO with 3 ${\times}$ 3 anchor leg system was considered. To better guide search for the optimum cost, three different penalty functions were applied. The results show that the presented HS-based cost-optimum offshore mooring design tool can be used to find optimum mooring design values such as declination angle and horizontal end point separation as well as a cost-optimum mooring system in case either the allowable maximum offset or factor of safety varies.

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).

Study(III) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - The Proper Use of Long-term Allowable Compressive Load of PHC Piles by Analyzing Quality Test and Product Specifications Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(III) - 품질 성능 검사 자료 및 성능 제원 표 분석을 통한 PHC말뚝의 장기허용압축하중 성능의 올바른 활용 -)

  • Kim, Chae Min;Yun, Dae Hee;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.15-28
    • /
    • 2019
  • Long-term allowable compressive Loads of PHC piles were analyzed based on qualification tests results by 17 small and medium PHC pile producing companies and product specifications by 6 major and 17 small and medium PHC pile producing companies. At the present stage, an average long-term allowable compressive load of PHC pile was designed at 70% level from current design data, and safety factor of 4.0 was applied to long-term allowable compressive loads of PHC pile despite of its excellent quality. Most quality standards of PHC pile are specified at KS F 4306. But compressive strength test method of spun concrete is specified at KS F 2454. As a result of analyzing quality test data supplied by each manufacturer, all quality test results showed higher performances than standard values. Therefore, it was considered that the capacity of PHC pile can be used up to the maximum allowable compressive load of PHC pile when PHC pile is designed.

Rule Based System for Selection of Foundation Types of Building Structures (건물의 기초 형식 선정을 위한 규칙 기반 시스템)

  • 김한수;최창근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1996
  • A rule based system for foundation design of building structures is developed with CLIPS in this study. The types of foundation and the allowable bearing capacity of supporting soil inferred by the rule based system for selection of foundation type, called SOFTEX, are transferred to a structural design program for building foundation. The allowable bearing capacity is calculated with N values of Standard Penetration Test. The foundation types such as independent spread footing, wall footing, combined footing and mat foundation can be inferred by the foundation merge procedure developed in this study. This procedure is based on the analysis data from the super structure and the estimated bearing capacity. By using this integrated system, structural engineers with less experience in foundation design can design the foundation system for the given superstructure and the site condition with relative ease.

  • PDF

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.