• 제목/요약/키워드: All Ceramic

검색결과 1,135건 처리시간 0.032초

주입성형한 지르코니아 소결체의 기계적 성질에 미치는 알루미나 첨가의 영향 (Effects of the Addition of Alumina on the Mechanical Properties of Cast Zirconia Sintered Body)

  • 이동윤;조준호;서정일;배원태
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.113-119
    • /
    • 2012
  • Purpose: Zirconia blocks for all ceramic dentures are divided into two groups. One is pre-heated block and the other is binder added block. In this study, the possibility of recycling the remained parts of binder added block after CAD/CAM machining with slip casting process was investigated. Methods: Owing to the binder added block contain large amount of organic matter, Binder burn-out was must be carried out before ball milling for preparing the casting slip. Binder burn-out was accomplished at $600^{\circ}C$ for 10 hours. Ball milling was performed with 5mm zirconia ball and 60mm polyethylene bottle. From 0% to 5% at 1% intervals of alumina was added to zirconia powder for preparing slip. Solid casting was achieved with plaster mold. Cast bodies were dried and sintered at $1,500^{\circ}C$ for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM, EDS and XRD analysis were executed. Results: Optimum slips for casting was prepared with 300g ball, 100g powder, and 180g distilled water. Cast body without alumina showed 26% of linear shrinkage, 6.07 of apparent density, and 470MPa of three point bend strength. On the other hand, as received zirconia block, which was sintered at the same conditions, showed 23% of linear shrinkage, 6.10 of apparent density, and 680MPa of three point bend strength. When 3% of alumina was added to zirconia, sintered body showed 23% of linear shrinkage, 6.10 of apparent density, and 780MPa of three point bend strength. SEM photomicrographs and EDS analysis showed alumina particles uniformly dispersed in zirconia matrix, and XRD analysis showed no phase transformation of tetragonal zirconia particles was occurred when alumina was added. Conclusion: According to the all of this experimental results, 3% of alumina added cast zirconia body showed excellent mechanical properties more than as received binder containing zirconia block.

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

수복물의 종류가 근관치료된 상악 제2소구치의 응력분포에 미치는 영향: 3차원 유한요소법적 연구 (EFFECT OF RESTORATION TYPE ON THE STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY PREMOLARS; THREE-DIMENSIONAL FINITE ELEMENT STUDY)

  • 정현숙;김현철;허복;김광훈;손권;박정길
    • Restorative Dentistry and Endodontics
    • /
    • 제34권1호
    • /
    • pp.8-19
    • /
    • 2009
  • 본 연구의 목적은 다양한 교합하중 조건하에서 아말감, 복합레진, 세라믹 인레이, 그리고 금 인레이로 수복한 근관치료된 상악 제2소구치의 음력분포를 3차원 유한요소법으로 분석하는 것이다. 발치된 상악 제2소구치를 이용하여 근관치료된 3차원 유한요소모형을 제작하였다. 제작된 소구치 모형의 근관와동을 위 4가지 재료로 각각 수복한 후, 협측교두 (Load-1) 또는 설측교두 (Load-2)에 500 N의 하중을, 설측교두와 근심변연에 총 170 N의 하중 (Load-3)을 가하였다. 세 가지의 하중조건 하에서 각 수복물에 따른 협측과 설측의 치경부 그리고 교합면의 정중구에서 나타나는 인장응력의 분포양상을 ANSYS 프로그램으로 분석하여 다음과 같은 결과를 얻었다. 1. 모든 수복물의 경우에서 Load-1에서는 설측의 치경부, Load-2에서는 협측의 치경부에서 높은 응력이 관찰되었고 수복물 종류에 따른 차이는 관찰되지 않았다. 2. 모든 수복물의 경우에서 교합면의 하중점 근처 와정중구를 따라 높은 응력이 관찰되었고 수복물 종류에 따라 약간의 차이가 관찰되었다. 3. 모든 수복물의 경우에서 Load-3에서는 하중점 근처에서 높은 응력이 관찰되었고 수복물 종류에 따른 차이는 관찰되지 않았다.

A SHEAR BOND STRENGTH OF RESIN CEMENT BONDED TO HUMAN UNCUT ENAMEL, CUT ENAMEL, AND DENTIN IN VITRO

  • Lee Jong-Yeop
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.319-324
    • /
    • 2003
  • Statement of problem. Adhesives in dentistry playa major role in the success of restorative treatments. In the treatment of all ceramic restoration it is needed to find the adequate bond strength between enamel and dentin. Purpose. The purpose of this study was to evaluate shear bond strength of resin cement bonded to extracted human uncut enamel, cut enamel, and dentin in vitro. Material and methods. Ten freshly extracted anterior teeth without any previous restorative treatments were chosen. The extracted teeth were embedded in PMMA cold acrylic in the shape of a cylinder, 25 mm in diameter by 25 mm in height. The bonding system used was as follow: Uni-Etch (32% phosphoric acid), One-Step adhesive, Duolink resin cement. The specimens were acid etched and rinsed with water. Two layers of One-Step adhesive were coated with a disposable brush on the uncut enamel. VIP curing light at $500mV/cm^2$ was used to cure the adhesive. For cut enamel shear bond test, the specimen used for uncut enamel was further reduced approximately $0.3{\sim}0.5mm$ using a laminate preparation diamond bur (0.3 mm in depth). The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit SiC paper and cleaned with distilled water. The bonding procedure on the cut enamel was same as uncut enamel bonding procedure. For dentin bonding test, the specimen used for cut enamel was further reduced approximately $0.5mm{\sim}1.0mm$ using a laminate preparation diamond bur (0.5 mm in depth of diamond cutting). The amount of reduction was evaluated with the silicone mold. The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit silicon carbon paper and cleaned in distilled water. The bonding procedure on the dentin was same as uncut enamel bonding procedure. All samples were mounted and secured on the Ultradent shear bond test sample holder, and Ultradent restricted shear bond testing device was used with Universal Instron machine until fracture. Analysis of variance (ANOVA) test was performed comparing the result at P<0.05. Multiple comparison (Tukey) was used to compare each groups. Result. The result showed that the mean value in shear bond strength of resin cement bonded to uncut enamel, cut enamel and dentin were 27.04 Mpa, 30.25 Mpa and 26.39 Mpa with respect. Conclusion. Within the limitation of this study, the mean value of the shear bond strength of cut enamel was higher than those of uncut enamel or dentin. However there existed no statistical differences between three different human dentition substrates due to increased adhesive characteristics.

In-Ceram 전부도재관의 shoulder 폭경에 따른 변연적합도 (Marginal fit of In-Ceram crown according to shoulder width)

  • 천승근;이청희;조광헌
    • 구강회복응용과학지
    • /
    • 제16권2호
    • /
    • pp.105-112
    • /
    • 2000
  • 본 연구는 치아형성시 shoulder 폭경이 변연 적합도에 미치는 영향을 평가하기 위해 시행하였다. 지대치의 치경부쪽의 shoulder 폭경을 0.6 mm, 0.9 mm, 1.2 mm로 나누어 각각 9개씩, 총 27개의 모형을 제작하여 통법에 따라 In-Ceram 전부 도재관을 제작한 후 시멘트 접착하고 근심, 원심, 협, 설측 중앙 부위를 200배 확대하여 변연 적합도의 측정한 후 각 군과, 측정부위에 따른 변연 적합도 비교해 본 결과 다음과 같은 결론을 얻었다. 1. shoulder 폭경이 0.6 mm인 경우 $81.28{\mu}m$, 0.9 mm인 경우는 $70.78{\mu}m$, 1.2mm 인 경우는 $67.75{\mu}m$의 변연간극을 보였다. 2. shoulder 폭경이 0.6 mm인 경우가 0.9 mm, 1.2 mm인 경우보다 변연간극이 유의한 차이를 크게 나탔났으며(p<0.05), 0.9 mm인 경우와 1.2 mm인 경우는 유의한 차이가 없었다(p>0.05). 3. In-Ceram 시편의 변연부에서 근심측, 원심측, 순측, 설측의 측정위치에 따른 변연적합도의 비교시 유의한 차이가 없었다(p>0.05).

  • PDF

Fe(NO3)3 수용액의 농도와 침지시간에 따른 지르코니아의 색상 및 특성 변화 (The change of color and physical properties of zirconia according to the variation of concentration and dipping time of Fe(NO3)3solution)

  • 서정일;박원욱;고재숙
    • 대한치과기공학회지
    • /
    • 제38권4호
    • /
    • pp.281-290
    • /
    • 2016
  • Purpose: The increased aesthetic requirements and demands of patients have resulted in the developments of coloring liquid for zirconia. Methods: In this study, zirconia block was dipped into $Fe(NO_3)_3$solution, which showed a color and then concentration of $Fe(NO_3)_3$and zirconia's color and physical properties depending on the dipping time were observed and compared with exclusive coloring solutions. As the result, the following conclusions were obtained. Results: When compared with the specimens that were colored using exclusive solutions, $L^*$ value rose overall depending on the concentration of $Fe(NO_3)_3$and $a^*$ value was red in the form of (+) in all the specimens. Also, $b^*$ value was in the form of (+) at 0.5 to $1{\ss}fl$, but was in the form of (-) at 1.5 to $2{\ss}fl$. The dipping time did not highly influence $L^*$ value, but $a^*$ value and $b^*$ value were directly opposite to the specimens, which were not colored, except the sample that was dipped for only 2 seconds. When compared with exclusive coloring solutions, $Fe(NO_3)_3$had the most similar color at 0.5 to $1{\ss}fl$ and the longer the coloring time, the higher the rate of color change became. In relation to the density change depending on the addition of $Fe(NO_3)_3$, there was the lowest density at $2{\ss}fl$ and the density was increased in the specimens that were not colored. Conclusion: These results show that $Fe(NO_3)_3$solution can be used to make colored zirconia. It is expected that newly made colored zirconia can be used in clinical practice because the colored zirconia not only possesses the mechanical properties that all ceramic core material should have but also was biocompatible to a living cells.

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성 (Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte)

  • 한종수;유학균;김재광
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.100-105
    • /
    • 2021
  • 최근 리튬이차전지의 안전성을 향상시킨 전고체 전지가 많은 관심의 대상이 되고 있으나 전도성 세라믹 또는 고체 고분자 전해질을 적용한 고체전지는 높은 계면 저항, 부반응 등과 같은 문제점을 지니고 있어 전기화학적 특성이 낮다. 기존 전고체 전지의 이러한 문제점을 해결하기 위하여 복합고체 전해질이 제안되었으며 본 연구에서는 나시콘 구조의 나노 입자 Li1.5Al0.5Ti1.5P3O12 (LATP) 전도성 세라믹, PVdF-HFP, 카보네이티 기반 액체전해질을 복합화 하여 유사고체 전해질을 제작하였다. 이 복합고체 전해질은 5.6 V의 높은 전압 안전성을 가지며 리튬이온의 탈리-착리 테스트에서 리튬 금속전극의 덴드라이트 성장 억제 효과가 있음을 보여준다. 또한 복합고체 전해질을 적용한 LiNi0.83Co0.11Mn0.06O2 (NCM811)기반 전지에서 4.8 V의 높은 충전 종지 전압에도 241.5 mAh/g의 높은 방전 용량을 나타내며 안정적인 전기화학 반응이 일어난다. NCM811 기반 전지의 90도 충전-방전 중에도 전지의 단락이나 폭발 없이 139.4 mAh/g 방전 용량을 보인다. 따라서 LATP기반 복합고체 전해질은 리튬이차전지의 안전성과 전기화학적 특성을 향상 시킬 수 있는 효과적인 방법임을 알 수 있다.

수종의 CAD/CAM 시스템으로 제작한 지르코니아 코어에서 Replica Technique을 이용한 변연 및 내면 적합도 평가 (Evaluation using Replica Technique on the marginal and internal fitness of zirconia cores by several CAD/CAM systems)

  • 허중보;박청길;김하영;박찬경;신상완
    • 대한치과보철학회지
    • /
    • 제48권2호
    • /
    • pp.135-142
    • /
    • 2010
  • 연구목적: 최근CAD/CAM으로 제작한 지르코니아 코어의 변연적합도에 관한 연구가 많이 진행되었지만, 여러 종의CAD/CAM 시스템의 변연 뿐만 아니라 내면적합도까지 상호 비교한 연구는 아직 미흡한 실정이다. 따라서 본 연구에서는 3종의CAD/CAM 시스템으로 제작한 전치부 단일 치아 지르코니아 코어의 변연 및 내면적합도를 Replica technique을 이용해 평가하고자 하였다. 연구 재료 및 방법:3종의CAD/CAM 시스템 (Cerasys $system^{(R)}$, KaVo $Everest^{(R)}$, $LAVA^{TM}$)을 이용하여, 시스템 별로 5개씩의 단일치아 지르코니아 코어를 제작하였다. 제작된 지르코니아 코어를 레플리카 테크닉 (Replica Technique)을 이용해 복제하고 복제된 시편을 협설, 근원심으로 정중앙을 절단하여 변연 및 내면의 간격을 측정하였다. Measuring microscope ($AXIO^{(R)}$)를 이용하여 50배 확대하여 촬영하고 $I-Solution^{(R)}$을 이용하여 측정하였고, ANOVA를 이용하여 통계적으로 분석하였다. 결과:지르코니아코어의 평균 변연간격은 $Cerasys^{(R)}$$84.74{\pm}27.57{\mu}m$, KaVo $Everest^{(R)}$$80.23{\pm}21.07{\mu}m$, $Lava^{TM}$$96.37{\pm}11.45{\mu}m$이었고 평균내면간격은각각 $Cerasys^{(R)}$$94.99{\pm}18.74{\mu}m$, KaVo $Everest^{(R)}$$92.31{\pm}25.18{\mu}m$, $LAVA^{TM}$$94.99{\pm}18.74{\mu}m$이었으며, 세 시스템간의 변연 및 내면간격의 평균적인 적합도에서 통계적 유의차는 없었다. 변연 및 내면간격의 비교에서는 KaVo $Everest^{(R)}$$LAVA^{TM}$보다 전반적으로 내면간격이 작은 것으로 보였다 (P< .05). 내면간격 중 절단부위의 간격은 세 시스템에서 공통적으로 다른 부위보다 크게 나타났다. 결론:본 연구에서 $Cerasys^{(R)}$, KaVo $Everest^{(R)}$, $LAVA^{TM}$시스템의 변연적합도는 차이가 없었고, 내면적합도는 KaVo $Everest^{(R)}$$LAVA^{TM}$ 보다 적었으나 세 시스템에서 공통적으로 절단부위 간격이 크게 나타났다. 세 시스템 모두 변연적합도 및 내면적합도가 임상적으로 허용범위 내에 있었다.