• Title/Summary/Keyword: Alkynes

Search Result 57, Processing Time 0.019 seconds

PHOTOCHEMISTRY OF 1-PHENYL-4-(PENTAMETHYLDISILANYL)BUTA-1,2-DIYNE:$[PdCI_2(PPh_3)_2]$-CATALYZED REACTION

  • Lee, Seong-Taek;Baek, Eun-Kyung;Shim, Sang-Chul
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.119-122
    • /
    • 1994
  • $PdCI_2(PPh_3)_2$-catalyzed photolysis of 1-phenyl-4-(pentamethyldisilanyl)buta-1,3-diyne (1) in dry benzene gives 1,4-disilacyclohexa-2,5-diene type dimerization products(3-6) via silacyclopropene. The silacyclopropene is formed from the singlet excited state of 1 and this silacyclopropene reacts with $(PPh_3)_2Pd^0$to form palladasilacyclobutene. In this reaction, the silylene-palladium complex is generated and reacts with 1 to give another silacyclopropene. $PdCI_2(PPh_3)_2$catalyzed photolysis of 1 with other alkynes supports the involvement of this silylene complex.

  • PDF

Laboratory Experiment: Synthesis and Characterization of 4-Methyl-N-(phenylacetyl)benzenesulfonamide through Cu(I)-Catalysis

  • Jung, Byunghyuck
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.187-190
    • /
    • 2018
  • A three-component coupling reaction of phenylacetylene, p-toluenesulfonyl azide, and water through copper catalysis is described to provide knowledge of spectroscopy and catalytic reactions and to introduce current research topics in organic chemistry for second-year undergraduate students. In the presence of stoichiometric amounts of phenylacetylene, p-toluenesulfonyl azide, and triethylamine, the reaction was performed with 4 mol% CuCl in water as the sole solvent and was completed in 1.5 h. A practical purification method and recrystallization of the crude reaction mixture resulted in the rapid isolation of the desired product with yields of 42~65%. Students characterized 4-methyl-N-(phenylacetyl)benzenesulfonamide by using melting-point determination, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. This experimental procedure and spectroscopic data analysis will serve as a platform for students to apply classroom knowledge in practical state-of-the-art research.

Convergent Synthesis of PAMAM-like Dendrimers from Azide-functionalized PAMAM Dendrons

  • Lee, Jae-Wook;Kim, Jung-Hwan;Kim, Byung-Ku;Kim, Ji-Hyeon;Shin, Won-Suk;Jin, Sung-Ho;Kim, Myung-hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1795-1800
    • /
    • 2006
  • The convergent synthesis of symmetric PAMAM-like dendrimers from azide-functionalized poly(amido- amine) (PAMAM) dendrons and two different multi-alkynes was investigated. The stitching method was based on the click chemistry protocol, i.e., the copper-catalyzed cycloaddition reaction between an alkyne and an azide.

Photoaddition Reactions of Alkynes to Quinonoid Compounds

  • Kim Sung Sik;Kim Ae Rhan;Cho In Ho;Shim Sang Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.57-60
    • /
    • 1989
  • UV irradiation of anthraquinone and diphenylacetylene in benzene gave 1:1 photoadduct (7) and cyclization product (8). The photoreaction of anthrone and diphenylacetylene in dichloromethane afforded the photooxidation products (7, 8, and 9) in air. The photoproduct (7) underwent the cyclization reaction during the purification by the column chromatography (silica gel). When irradiated with 350 nm UV light, the product (11) of benzil reacted with diphenylacetylene to give a photoadduct(12).

$New η^3-Allyl-Alkenyl- and η^3-Allyl-Alkynyl-Ir-Cp^* Compounds from Reactions of [Cp^*Ir(η^3-CH_2CHCHPh)(NCMe)]^+ with Alkynes$

  • Jin, Jong Sik;Jong, Dae Seong;Kim, Mi Yeok;Lee, Hyeon Gwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.739-742
    • /
    • 2001
  • Reactions of [Cp*Ir(η3-CH2CHCHPh)(NCMe)]OTf (1) with HC≡CR (R = H, CH2OH) in the presence of bases, B (B=NEt3, PPh3, AsPh3) produce stable Cp*Ir-η3-allyl-alkenyl compounds [Cp*Ir(η3-CH2CHCHPh)(-CH=CH-+B)]OTf (2) and [Cp*Ir(η3-CH2CHCHPh)(-C(CH2OH)=CH- +PPh3)]OTf (3), respectively in high yields. Cp*Ir-η3-allyl-alkynyl compounds Cp*Ir(η3-CH2CHCHPh(-C≡C-R') (4) and Cp*(η3-CH2CHCHPh)Ir-C≡C-p-C6H4-C≡C-Ir(η3-CH2CHCHPh)Cp* (5) have been prepared from reactions of 1 with HC≡CR'(R' = C6H5, p-C6H4CH3, C3H5, C6H9) and HC≡C-p-C6H4-C≡CH in the presence of NEt3.

Preparation, Reactions and Catalytic Activities of Water Soluble Iridium-Sulfonated Triphenylphosphine Complex

  • 진종식;장원태;양서균;주광석
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.324-327
    • /
    • 1997
  • Water soluble iridium complex, IrCl(CO)(TPPTS)2·χH2O (1) (TPPTS=m-trisulfonated triphenylphosphine) has been prepared from the reaction of a water soluble complex, IrCl(COD)(TPPTS)2·6H2O (COD=l,5-cyclooctadiene) with CO and unambiguously characterized by electronic absorption, 31P NMR, 13C NMR and IR spectral data. Complex 1 catalyzes the hydration of terminal alkynes to give ketones in aqueous solutions at room temperature. The rate of PhC≡CH hydration dramatically increases with addition of MeOH to the reaction mixture in H2O, which is understood in terms of i) the excellent miscibility between H2O and MeOH and ii) the assumed catalytic hydration pathway involving the initial formation of (alkyne)IrCl(CO)(TPPTS)2.

Synthesis and Properties of 1,4-Diboracyclohexene-2 Derivatives (1,4-Dibora-2-cyclohexene 유도체들의 합성과 그 성질)

  • Uhm, Jae-Kook;Hu D.;Zenneek U.;Pritzkow H.;Siebert W.
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.490-497
    • /
    • 1990
  • Two synthetic routes for the 1,4-diboracyclohexene-2 ring 8 have been developed. Method i) starts with 1,2-bis(dichloroaluminyl)ethane, in which the AlCl$_2$ group is replaced by BCl$_2$. Exchange of the chlorine with BI$_3$ in 1,2-bis-(dichloroboryl)ethane yields the corresponding iodo compound, which reacts with the alkynes to heterocycles 8a, b in good yield. In method ii) B$_2$Cl$_4$ is added to alkenes, replacement of chlorine with BI$_3$ yields the bis(diiodoboryl)ethane derivatives which undergo redox reactions with alkynes to give 8c, d. The diiodo derivative 8a forms the pyridine adduct 9a, and reacts with ether to give the ethoxy derivative 8f. 8a-d react with AlMe$_3$ to yield the corresponding dimethyl derivatives 8g-j, which give unstable radical anions when treated with potassium in THF. The ESR parameters are reported. In electrochemical experiments irreversible reductions of 8g-j are observed. 8g-j react with (C$_5$H$_5$)Co(C$_2$H$_4$)$_2$ to give the intermediate 16 VE complexes (C$_5$H$_5$)Co(8), in which C-H activation occurs with formation of the corresponding red 1,4-diboracyclohexadiene complexes 10. The X-ray structure analyses of 10h and 10j are reported.

  • PDF

Precise Control of Thermoresponsive Properties of Polymers with Hydroxy Groups in the Side Chains (곁가지에 다양한 길이의 알코올 그룹을 지닌 고분자들의 저임계 용액온도 민감성 제어)

  • Lee, Hyung-Il
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.165-168
    • /
    • 2015
  • Thermoresponsive polymers were successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized by ATRP, followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-alkyne. Homopolymers having secondary amine groups, tertiary amines with hydroxyethyl and hydroxypropyl groups were synthesized by adding 2-azido-N-ethyl-ethanamine, 2-[(2-azidoethyl)amino]ethanol, and 2-[(2-azidoethyl)amino]propanol, respectively, to the PHEMA-alkyne backbone using click chemistry. Molecular weight (MW), molecular weight distribution (MWD), and click reaction efficiency were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The transmission spectra of the 1.0 wt% aqueous solutions of the resulting polymers at 650 nm were measured as a function of temperature. Results showed that the lower critical solution temperature (LCST) could be easily controlled by the length of the hydroxyalkyl groups.

A Multisegmented Polystyrene with pH-Cleavable Linkages

  • Kang, Tae-Hyeon;Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2694-2698
    • /
    • 2014
  • A multisegmented polystyrene (PS) with pH-cleavable ester and carbamate linkages was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). ATRP was employed to synthesize polystyrene from hydroxyl-terminated initiator using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) as the catalyst. The reaction of the resulting PS with sodium azide yielded the azido-terminated polymer. The hydroxyl group in the other end of the polymer was reacted with 4-nitrophenyl chloroformate (NPC), followed by reaction with propargylamine to produce an alkyne end group with a carbamate linkage. The PS with an alkyne group in one end and an azide group in the other end was then self-coupled in the presence of CuBr/2,2'-bipyridyl (bpy) in DMF to yield a desired multisegmented PS. Molecular weight and molecular weight distribution of the self-coupled polymer increased with time, as in the typical step-growth-type polymerization processes. Finally, we demonstrated that the ester and carbamate linkages of the multisegmented PS were hydrolyzed in the presence of HCl to yield individual PS chains.

Influence of Quaternization on UCST Properties of Hydroxyl-Derivatized Polymers

  • Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3001-3004
    • /
    • 2014
  • A series of hydroxyl-derivatized quaternized polymers were successfully synthesized by atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry), followed by quaternization reactions. ATRP was employed to synthesize poly(2-hydroxyethyl methacrylate) (PHEMA), followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-Alkyne. 2-Azido-1-ethanol and 3-azido-1-propanol were combined with the HEMA-Alkyne backbone via click reaction, resulting in triazole-ring containing hydroxyl-derivatized polymers. Quaternization reactions with methyl iodide were conducted on the triazole ring of each polymer. Molecular weight, molecular weight distribution, and the degree of quaternization (DQ) were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The average molecular weight ($M_n$) of the resulting polymers ranged from $5.9{\times}10^4$ to $1.05{\times}10^5g/mol$ depending on the molecular architecture. The molecular weight distribution was low ($M_w/M_n$ = 1.26-1.38). The transmission spectra of the 0.1 wt % aqueous solutions of the resulting quaternized polymers at 650 nm were measured as a function of temperature. Results showed that the upper critical solution temperature (UCST) could be finely controlled by the level of DQ.