• Title/Summary/Keyword: Alkaline inorganic wastes

Search Result 5, Processing Time 0.018 seconds

Quantitative Evaluation of CO2 Sequestration in Ca-rich Waste Mineral for Accelerated Carbonation (가속탄산화를 통한 Ca-rich Waste Mineral의 정량적인 CO2 고용량 평가)

  • Nam, Seong-Young;Um, Nam-Il;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.64-71
    • /
    • 2014
  • Accelerated carbonation is a technique that can be used as a CCS technology for $CO_2$ sequestration of approximately 5~20% in a stable solid through the precipitation of carbonate. An alkaline inorganic waste material such as ash, slag, and cement paste are generated from incinerators, accelerated carbonation offers the advantage of lower transport and processing costs at the same generation location of waste and $CO_2$. In this study, we evaluated an amount of $CO_2$ sequestration in various types of inorganic alkaline waste processed by means of accelerated carbonation. A quantitative evaluation of $CO_2$ real sequestration based on a TG/DTA analysis, the maximum 118.88 $g/kg_{-waste}$ of $CO_2$ in paper sludge fly ash, the maximum 134.46 $g/kg_{-waste}$ of $CO_2$ in municipal solid waste incinerator bottom ash, the maximum 9.72 $g/kg_{-waste}$ of $CO_2$ in industrial solid waste incinerator fly ash, and the maximum $18.19g/kg_{-waste}$ of $CO_2$ in waste cement paste.

Separation and purification of elements from alkaline and carbonate nuclear waste solutions

  • Alexander V. Boyarintsev ;Sergei I. Stepanov ;Galina V. Kostikova ;Valeriy I. Zhilov;Alfiya M. Safiulina ;Aslan Yu Tsivadze
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.391-407
    • /
    • 2023
  • This article provides a survey of wet (aqueous) methods for recovery, separation, and purification of uranium from fission products in carbonate solutions during the reprocessing of spent nuclear fuel and methods for removal of radionuclides from alkaline radioactive waste. The main methods such as selective direct precipitation, ion exchange, and solvent extraction are considered. These methods were compared and evaluated for reprocessing of spent nuclear fuel in carbonate media according to novel alternative non-acidic methods and for treatment processes of alkaline radioactive waste.

Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater (알칼리성 폐기물과 해수를 이용한 이산화탄소 포집 및 해양저장)

  • Lee, Junghyun;Park, Misun;Joo, Jisun;Gil, Joon-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • We investigate the availability of $CO_2$ ocean storage by means of chemical conversion of $CO_2$ to the dissolved inorganic carbon (mainly the bicarbonate ion) in seawater. The accelerated weathering of limestone (AWL) technique, which is accelerating the natural $CO_2$ uptake process through the chemical conversion using limestone and seawater, was proposed as an alternative method for reducing energy-related $CO_2$ emission. The method presented in this paper is slightly different from the AWL method. It involves reacting $CO_2$ with seawater and quicklime obtained from alkaline wastes to produce the bicarbonate-rich solution over 100 times more than seawater, which could be released and diluted into the ocean. The released dense bicarbonate-enriched water mass could subside into the deeper layer because of the density flow, and could be sequestrated stably in the ocean.

Characterization of inorganic materials in industrial waste and RDF using SEM-EDS (SEM-EDS를 이용한 산업단지폐기물과 고형연료의 무기 성분 규명)

  • Jeong, Moon-Heon;Lee, Ju-Ho;Yoo, Jeong-Kun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2786-2793
    • /
    • 2009
  • Recently, the development and spread of the new recyclable energy becomes urgent because of the depletion of fossil fuel and strengthening the environmental regulation. To recovery from the waste out of the many new recyclable energies has been proved as the most favorable when the potential value of energy source is compared. The RDF from the waste has been approved as the most economical method out of the other methods. However, the toxic gases (HCl, Dioxin etc) and heavy metals generated during the burning of the industrial wastes have been pointed out as problems. The PVC, alkali metal chloride, and alkaline earth metal chloride are major materials for emitting the chlorine and chlorine compounds have the problem such as the erosion on the heat collection device. This research has analyzed the heavy metal components containing in the industrial waste, and the concentration of Cl and S in the industrial waste generated in B industrial complex are slightly high than that of the A industrial complex. The results can be used to discuss the origin of inorganic components in industrial waste and utilized as a base data to improve the performance of the RDF as fuel.

Studies on Microbial Utilization of Agricultural Wastes (Part 4) Effect of Acid in Neutralization after Alkali Treatment of the Wastes on Cellulosic Single Cell Protein Production (농산폐자원의 미생물학적 이용에 관한 연구 (제사보) 기질처리시의 알칼이ㆍ산중화 조건에 대하여)

  • Lee, Gye-Jun;Ko, Young-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.3
    • /
    • pp.99-104
    • /
    • 1976
  • Experiments were carried out to establish the effects of acids in neutralization after alkaline treatment of rice straw, with which cellulosic single cell protein can be produced by cellulose utilizing bacteria, Cellulomonas flavigena KIST 321, previously isolated by authors. Following results were obtained. 1. Rice straw as carbon source was pretreated with 10 volumes of 1 normality of NH$_4$OH or NaOH(NaOH/substrate:40%, and then washed with water or neutralized with H$_3$PO$_4$, H$_2$SO$_4$, HCl and CH$_3$COOH. Among the above mentioned methods, neutralization with H$_3$PO$_4$after alkaline treatment was proved to be the most effective on its digestibility and SCP production. Dry cell 12.28g/$\ell$ and 78% digestibility were obtained. 2. When rice straw was treated with NaOH solution, the result suggested that the productibity of cell-mass was attained on treatment of rice straw with 6% of NaOH (NaOH/substrate ratio) for 15~24hrs at room temperature. 3. When rice straw was treated with NaOH, a volume of water to substrate is adequate by two or three fold and the amount of NaOH can be economized up to 5% for the weight of rice straw. 4. The steaming of rice straw at 121$^{\circ}C$ for 30min. in alkaline treatment of rice straw gave the similiar effectiveness to that at room temperature for 15~24hrs. and accelerated the sterilization of the substrate. 5. Finally, the level of inorganic phosphate in a medium was investigated. 11.2g of dry cell was produced at the concentration of 0.2%, phosphate (phosphorous level 0.04%) in medium even though treated rice straw was neutralized with HCI instead of H$_3$PO$_4$, and 12.2g/$\ell$ at the concentration of 0.3% phosphate (phosphorous 0.04%) on neutralization with H$_2$SO$_4$.

  • PDF