• Title/Summary/Keyword: Alkali activated

Search Result 255, Processing Time 0.039 seconds

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 알칼리 활성 모르타르의 유동성과 압축강도)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin;Jeon, Yong-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. In this study, we investigated the influence of alkali activator and superplasticizer on the flowability and compressive strength of the alkali-activated mortar in oder to develop cementless alkali-activated concrete using blast furnace slag. In view of the results, we found out that the type and mixture ratio of alkali activator, the type and adding order of superplasticizer results to be significant factors. When cementless alkali-activated mortar using blast furnace slag manufactured with 1:1 the mass ratio of 9M NaOH and sodium silicate, and added superplasticizer before alkali activator in the mixer, we can be secured workability with 180 mm of flow during 1 hours and compressive strength of about 50 MPa under $20^{\circ}C$ curing condition at age of 28days.

  • PDF

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(2) - Reaction products and microstructure - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(2) - 반응생성물과 미세구조 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.810-819
    • /
    • 2007
  • Investigation of alkali activation of fly ash and blast furnace slag was carried out using waterglass and sodium hydroxide. XRD, FTIR, $^{29}Si$ and $^{27}Al$ NMR, TGA and SEM were used to observed the reaction products and microstructure of the fly ash/slag cement (FSC) pastes. The reaction products were amorphous or low-ordered calcium silicate hydrate and aluminosilicate gel produced from alkali activation of blast furnace slag and fly ash, respectively. On the basis of this investigation, waterglass solution with a modulus(Ms) of 1.0 and 1.2 is recommended for alkali activation of fly ash and blast furnace slag. Morphology of FSC pastes alkali-activated with Ms of 1.0 and 1.2 shows a more solid and continuous matrix due to restructuring of gel-like reaction products from alkali-activated fly ash and blast furnace slag together with another hydrolysis product(i.e., silica gel) from water glass.

Prediction models for compressive strength of concrete with Alkali-activated binders

  • Kar, Arkamitra;Ray, Indrajit;Unnikrishnan, Avinash;Halabe, Udaya B.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.523-539
    • /
    • 2016
  • Alkali-activated binder (AAB) is increasingly being considered as an eco-friendly and sustainable alternative to portland cement (PC). The present study evaluates 30 different AAB mixtures containing fly ash and/or slag activated by sodium hydroxide and sodium silicate by correlating their properties from micro to specimen level using regression. A model is developed to predict compressive strength of AAB as a function of volume fractions of microstructural phases (physicochemical properties) and ultrasonic pulse velocity (elastic properties and density). The predicted models are ranked and then compared with the experimental data. The correlations were found to be quite reasonable (R2 = 0.89) for all the mixtures tested and can be used to estimate the compressive strengths for similar AAB mixtures.

Compressive Strength and Optimal Mixing Ratio of Alkali Activated Cement Concrete Containing Fly Ash (플라이 애쉬를 활용한 알칼리 활성시멘트 콘크리트의 압축강도와 최적혼합비)

  • Han, Sang-Ho;Park, Sang-Sook;Kang, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 2007
  • This is a fundamental research to utilize alkali activated cement(AAC) in concrete. The compressive strength of AAC concrete were measured for the various mixing ratios of activator/fly ash, and the mixing ratios of water glass, NaOH, and water among the activators. The mixing ratio of fine and coarse aggregates was maintained constantly. The relationships between the compressive strength and mixing ratios were analyzed to find the optimal mixing ratio of AAC concrete. As the results, the optimal mixing ratio of activator/fly ash in AAC concrete was 0.7, and that of water glass, NaOH, water among the activator was 4.0:1.0:2.5 for the maximum compressive strength.

Manufacture of alkali activated mortar using bottom ash and its properties (바텀애쉬를 이용한 알칼리 활성화 모르타르의 제조 및 특성)

  • Kang, Su-Tae;Kang, Hyun-Jin;Ryu, Gum-Sung;Ko, Kyung-Taek;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.267-268
    • /
    • 2010
  • In order to investigate the applicability of bottom ash as a source material in alikali activated mortar, experimental studies on the effect of the constituents in alkali activated mortar were performed in terms of workability and strength.

  • PDF

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Acid Corrosion Resistance and Durability of Alkali-Activated Fly Ash Cement-Concrete (알칼리활성 플라이 애쉬 시멘트-콘크리트의 산저항성 및 내구성)

  • Kang, Hwa-Young;Park, Sang-Sook;Han, Sang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • A new cementitious material has been developed, called alkali-activated fly ash cement(AAFC), which is used to produce AAFC-concrete for construction. The effect of acid attack, sodium chloride solution, carbonation, freeze-thaw cycling, and SEM, XRD analysis of the AAFC-concrete prepared using alkali-activated fly ash cement and OPC-concrete were experimentally investigated. It was found that the acid resistance of AAFC-concrete(35 MPa) prepared from alkali-activated fly ash at 85$^{\circ}C$ for 24 hrs is far better than OPC-concrete(35 MPa). Also, the AAFC-concrete(35 MPa) had a similar resistance of OPC-concrete(35 MPa) to attack, such as sodium chloride solution, carbonation and freeze-thaw cycling.

Fundamental Study of Alkali-Activated Concrete Properties based on Modified Slag (개질 슬래그 기반 알칼리 활성 콘크리트의 기본 물성 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • PURPOSES : This study set out to investigate the fundamental properties of alkali-activated concrete (AAC) using modified slag as the pavement maintenance material. METHODS: The material properties of modified slag based alkali-activated concrete (MSAAC) were analyzed and evaluated against those of alkali-activated slag concrete (AASC). Several mix formulations were considered, including one MSACC and four AASCs. The main variables considered in the study were slump, air content, compressive strength, rapid chloride permeability test, scaling resistance, freeze-thaw test, XRD, SEM, and EDS. RESULTS: MSAAC exhibits a compressive strength in excess of 21 MPa six hours after curing. Also, the charge passed of the MSACC was found to be less than 2000 coulombs after seven days and about 1000 coulombs after 28 days. The weight loss determined from a scaling test did not exceed $1kg/cm^2$ in the case of the MSACC, but that of the AASCs had already exceeded $1kg/cm^2$ at the 10th cycle. Based on the results of the freeze-thaw test, the relative dynamic modulus of every mix was found to be in excess of 90%. An energy dispersive spectroscopy(EDS) analysis found that the weight rate percentage of the calcium and aluminum in the MSAAC mix is twice that of the AASC mixes. CONCLUSIONS : It was found that the MSAAC mix exhibits significantly better performance than AASC mixes, based on various fundamental properties.