• Title/Summary/Keyword: Alkali Melt

Search Result 25, Processing Time 0.033 seconds

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

Alkali Volatilization in TV Screen Glass Melts

  • Kim, Ki-Dong;Hwang, Jong-Hee
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.343-347
    • /
    • 2000
  • The alkali volatilization of TV screen glass melts with various $K_2$O/R$_2$O mole fraction was investigated by dependence of weight loss on time. The melt conductivity was also determined to evaluate relative alkali diffusion in melts. Based on the results of time dependence and compositional dependence of volatilization combining the results of conductivity, the rate determining process of the volatilization was suggested. From the viewpoint of the production and the application of TV glass it was also discussed a correlation between the dependence of properties on $K_2$O/R$_2$O and the present commercial composition.

  • PDF

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

The Study on the Power Consumption for Glass Melting by Cold Crucible Melter (CCM용융에 대한 유리용융 조건 연구)

  • Jin, Hyun-Joo;Lee, Kyu-Ho;Jung, Young-Jae;Bae, So-Young;Kim, Tae-Ho;Jung, Young-Joon;Kim, Young-Seok;Lee, Kang-Taek;Ryu, Bong-Ki
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

Interaction of Alkali Oxide and $SO_3$ on $3CaO.SiO_2$ Formation and Microstructure ($3CaO.SiO_2$ 생성반응과 미세조직에 있어서 Alkali Oxide와 $SO_3$의 상호작용)

  • 정해문;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1071-1079
    • /
    • 1993
  • Interaction of alkali oxides and SO3 and C3S formation and microstructure was studied using K2CO3 and Na2CO3 as alkali sources and (NH4)2SO4 for SO3. When SO3/K2O=1.43 as mole ratio, K2O and SO3 react to form K2SO4, this phase is immiscible with other oxide melt and thus could not affect C3S formation as well as its microstructure. In a condition of SO3/K2O 1, C3S crystals were round and grown in a much larger size. With addition of Na2O and SO3 by only 1wt% each, C3S formation was strongly hindered. Since C2S was stabilized by Na+ and SO4-2, it could not react to give C3S formation. However in the condition of SO3/Na2O=1.43, a little amount of C3S was formed. It is considered that small amount of Na2SO4 was formed, this phase was immiscible with clinker liquid, and the C3S crystals were formed locally in the liquid part of relatively low Na2O and SO3 compositions. These crystals had irregular and rough surfaces and contained more inclusions than those grown from K2O.SO3 system.

  • PDF

Studies on the Phase Separation of the Borosilicate Glass by Addition of Titanium Dioxide ($TiO_2$ 첨가에 따른 붕규산 유리의 분상에 관한 연구)

  • 박용완;민병욱
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.257-261
    • /
    • 1981
  • The tendency of glass containing titanium-dioxide to separate into two phases can be attributed to a change of the coordination number of titanium from six to four on increase of temperature and to "freezing" of the high temperature four fold coordination on cooling of the melt. Addition of TiO2 to the basic glass 8.7 $Na_2O$ 22.4B2O3 68.9 $SiO_2$ was varied 5 to 25 parts. The phase separation in the temperature range of transformation was examined with each heating temperature and soaking time. As the experimental results, the most distinct phase separation were obtained from alkali extraction method when $TiO_2$ was added 15 parts. The apparant activation energy was 30.5 Kcal/mole by alkali extraction method derived from Arrhenius plots.ius plots.

  • PDF

Melt Properties of Plasma Display Panel Substrate Glasses Based on Float Process (Float 공법을 고려한 Plasma Display Panel용 기판유리 용융체의 특성)

  • Kim, Ki-Dong;Jung, Woo-Man;Jung, Hyun-Su;Kwon, Sung-Ku;Choi, Se-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.433-438
    • /
    • 2006
  • In order to examine the working condition of melts in tin bath of float process it was investigated Sn diffusion behavior and solidification rate of melts for alkali-alkaline earth-silica PDP substrate glasses such as commercial CaO rich CS-77 glass, commercial $Al_2O_3$ rich PD-200 glass and self developed $SiO_2$ rich T-series (T-2, T-4, T-6) glasses. In the case of Sn depth and concentration created in glass surface by ion exchange between Sn and alkali, T-series showed lower value than CS-77, especially T-2 is more excellent than PD-200. The solidification rate of melts expressed by cooling time between $log{\eta}=4\;and\;7.6dPa{\cdot}s$ was low for T-series comparing with CS-77 and PD-200. Therefore, it was concluded that T-series is desirable considering forming condition in the tin bath of the float process.

Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate (Plasma Display Panel용 기판 유리용융체의 내화물 침식)

  • Kim, Ki-Dong;Jung, Hyun-Su;Kim, Hyo-Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Synthesis and Crystal Structures of Alkali Lithium Molybdates and Alkali Lithium Tungstates (알칼리 리치움 몰리브덴산염과 알칼리 리치움 텅그스텐산염의 합성과 결정구조)

  • 정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.72-76
    • /
    • 1985
  • Single crystals of the compound MeI $(LiMoO_4)$ and $Me^I(LiWO_4)$ ($Me^I=K$, Rb, Cs) were synthesized by slow evaporation from aqueous solution and bycooling from melt. The compounds of potassium or rubidium are hygroscopic and they form easily hydrated crystals $Me^I LiMoO_4$.$H_2O$ or $Me^ILiMoO_4$.$H_2O$ or $Me^ILiWO_4$.$H_2O$ from aqueous solution. The structures of these hydrated crystals are each other isotypic and they are built up of distorted layers of $(LiMoO_5)$ or $(LiWO_5)$. There exist two types of tetrahedral framework structures in this group of anhydrous molybdates and tung-states ; tridymite-type and cristobalite-type. $KLiMoO_4$ and $KLiWO_4$ have two types of polymorphic structures where as only the cristobalite-type is found in the Rb-and Cs-compounds. The system $KLiSO_4-KLiMoO_4$ was studied. Two components are almost immiscible but there eixst a narrow area of solid solution on the side of sulfate in the system.

  • PDF