DOI QR코드

DOI QR Code

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes

알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향

  • Oh, Jeong Seok (Hyundai-Kia Motors Co., Materials Development Center) ;
  • Lee, Seong-Hoon (Hyundai-Kia Motors Co., Materials Development Center) ;
  • Kim, Kwang-Jea (Department of Polymer Science and Engineering, Inha Univ.)
  • 오정석 (현대-기아 자동차 재료개발연구팀) ;
  • 이성훈 (현대-기아 자동차 재료개발연구팀) ;
  • 김광제 (인하대학교 고분자공학과)
  • Received : 2014.06.04
  • Accepted : 2014.07.19
  • Published : 2015.01.25

Abstract

The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

나노케냐프 섬유가 포함된 셀룰로스 섬유를 알카리(NaOH)로 처리 후 PP 수지에 첨가하여 물성에 미치는 영향에 대하여 조사하였다. 알카리를 섬유에 처리한 효과로는 M.I., 신장율, 충격강도가 증가하는 반면 인장강도, 휨모듈러스, 열변형온도가 처리하지 않은 섬유에 비해 감소하였다. 알카리를 나노섬유에 처리하였을 때 섬유표면의 불순물과 화학물질을 제거하여 섬유표면의 특성을 변화시켜서 나노섬유와 PP 수지간의 계면간 접착력을 감소시키고 PP의 특성을 변화시키는 것으로 보인다.

Keywords

References

  1. A. K. Bledzki, O. Faruk, and V. E. Sperber, Macromol. Mater. Eng., 291, 449 (2006). https://doi.org/10.1002/mame.200600113
  2. H. Yano, Paper presented at 10th International Conference on Progress in Biofibre Plastic Composites, Totonto, Canada, Opening Plenary Session, May 12-13 (2008).
  3. H. B. Buttlar, Paper presented at RIKO-2005, Hannover, Germany, November 10 (2005).
  4. L. Czarnecki and J. L. White, J. Appl. Polym. Sci., 25, 1217 (1980). https://doi.org/10.1002/app.1980.070250623
  5. H. Dalvag, C. Klason, and H. E. Stromvall, Int. J. Polym. Mater., 11, 9 (1985). https://doi.org/10.1080/00914038508078651
  6. A. J. Michell, Appita, 39, 223 (1986).
  7. B. S. Sanschagrin, T. Sean, and B. V. Kokta, J. Thermoplast. Compos. Mater., 1, 184 (1988). https://doi.org/10.1177/089270578800100206
  8. I. Sakurada, Y. Nukushina, and T. Ito, J. Polym. Sci., 57, 651 (1962). https://doi.org/10.1002/pol.1962.1205716551
  9. M. Ioelovich, Bioresources, 3, 1403 (2008).
  10. K. Abe, S. Iwamoto, and H. Yano, Biomacromolecules, 8, 3276 (2007). https://doi.org/10.1021/bm700624p
  11. X. M. Dong, J. Revol, and D. G. Gray, Cellulose, 5, 19 (1998). https://doi.org/10.1023/A:1009260511939
  12. V. Favier, H. Chanzy, and J. Y. Cavaille, Macromolecules, 28, 6365 (1995). https://doi.org/10.1021/ma00122a053
  13. J. Y. Cavaille, H. Chanzy, V. Favier, and B. Ernst, U.S. Patent 6,103,790 (2000).
  14. M. M. D. Lima and R. Borsali, Macromol. Rapid Commum., 25, 771 (2004). https://doi.org/10.1002/marc.200300268
  15. M. A. S. Azizi Samir, F. Alloin, and A. Dufresne, Biomacromolecules, 6, 612 (2005). https://doi.org/10.1021/bm0493685
  16. M. Ioelovich and A. Leykin, Cellulose Chem. Technol., 40, 313 (2006).
  17. J. I. Moran, V. A. Alvarez, V. P. Cyras, and A. Vazquez, Cellulose, 15, 149 (2008). https://doi.org/10.1007/s10570-007-9145-9
  18. H. Ono, Y. Shimaya, T. Hongo, and Ch. Yamano, J. Trans. Mater. Res. Soc. Japan, 26, 569 (2001).
  19. X. F. Li, E. Y. Ding, and G. K. Li, Chin. J. Polym. Sci., 19, 291 (2001).
  20. K. Oksman, A. P. Mathew, D. Bondesone, and I. Kvien, Compos. Sci. Technol., 66, 2776 (2006). https://doi.org/10.1016/j.compscitech.2006.03.002
  21. A. Bhatnager and M. Sain, Canadian Patent 02437616 (2003).
  22. A. Bhatnager and M. Sain, J. Reinf. Plast. Compos., 24, 1259 (2005). https://doi.org/10.1177/0731684405049864
  23. A. N. Nakagaito and H. Yano, Appl. Phys. A: Mater. Sci. Proc., 78, 547 (2004). https://doi.org/10.1007/s00339-003-2453-5
  24. A. Chakraborty, M. Sain, and M. Kortschot, Holzforschung, 59, 102 (2005).
  25. M. Pakko, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. osterberg, J. Ruololainen, J. Laine, P. T. Larssen, O. Ikkola, and T. Lindstrom, Biomacromolecules, 8, 1934 (2007). https://doi.org/10.1021/bm061215p
  26. M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindstrom, Eur. Polym. J., 43, 3434 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.038
  27. W. P. Chang, K. J. Kim, and R. K. Gupta, Compos. Interface, 16, 937 (2009). https://doi.org/10.1163/092764409X12477481859067
  28. Md. S. Islam, S. Hamdan, I. Jusoh, Md. R. Rahman, and A. S. Ahmed, Mater. Des., 33, 419 (2012). https://doi.org/10.1016/j.matdes.2011.04.044
  29. K. Zhang and J. S. Qin, Petroleum Sci. Technol., 29, 183 (2011). https://doi.org/10.1080/10916460902839214
  30. I. Ghasemi and M. Farsi, Iran Polym. J., 19, 811 (2010).
  31. M. Glarner and S. Gogolewski, J. Polym. Degrad. Stab., 92, 300 (2007).
  32. D. Fu, Y. Zhao, and Chin, J. Phys. Chem. B, 70, 50 (2005).
  33. M. S. Sreekala and S. Thomas, Compos. Sci. Technol., 63, 861 (2003). https://doi.org/10.1016/S0266-3538(02)00270-1
  34. J. George, M. S. Sreekala, and S. Thomas, Polym. Eng. Sci., 41, 1471 (2001). https://doi.org/10.1002/pen.10846
  35. A. K. Mohanty, M. A. Khan, and G. Hinrichsen, Compos. Sci. Technol., 60, 1115 (2000). https://doi.org/10.1016/S0266-3538(00)00012-9
  36. J. S. OH, S. H. Lee, S. Bumm, and K. J. Kim, Polymer(Korea), 37, 613 (2013).
  37. K. S. Shon, Korean Patent 10-1196641 (2010).
  38. J. S. Oh, M. J. Yun, G. Kang, S. H. Lee, K. Y. Jeong, and K. J. Kim, Korean Patent 10-1293920 (2010).
  39. R. G. Stanly, Forest Prod. J., 16, 62 (1966).
  40. J. W. Rowe and A. H. Conner, General Technical Report FPL18, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Madison, WI, 1979.
  41. K. J. Kim, S. Bumm, and J. L. White, J. Biobased Mater. Bio., 1, 388 (2007). https://doi.org/10.1166/jbmb.2007.015
  42. K. J. Kim, S. Bumm, and J. L. White, Compos. Interface, 15, 231 (2008). https://doi.org/10.1163/156855408783810830
  43. K. J. Kim, S. Bumm, R. K. Gupta, and J. L. White, Compos. Interface, 15, 301 (2008). https://doi.org/10.1163/156855408783810939
  44. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds: Technology and Physical Chemistry, Hanser, Munich, Cincinnati, 2008.
  45. K. J. Kim and J. L. White, Compos. Interface, 16, 539 (2009).
  46. K. J. Kim, S. Bumm, and J. L. White, Compos. Interface, 16, 619 (2009). https://doi.org/10.1163/092764409X12477406858223
  47. G. M. Rizvi, L. M. Matuana, and C. B. Park, Polym. Eng. Sci., 40, 2124 (2000). https://doi.org/10.1002/pen.11345
  48. G. Guo, G. M. Rizvi, C. B. Park, and W. S. Lin, J. Appl. Polym. Sci., 91, 621 (2004). https://doi.org/10.1002/app.13193
  49. W. P. Chang, K. J. Kim, and R. K. Gupta, Compos. Interface, 16, 687 (2009). https://doi.org/10.1163/092764409X12477425232217
  50. R. Yosomiya, K. Morimoto, A. Nakajima, Y. Ikada, and S. Toshio, Adhesion and Bonding in Composites, Dekker, New York, 1989.
  51. A. E. Woodward, Atlas of Polymer Morphology, Hanser, Munich, 1988.
  52. A. E. Woodward and D. R. Morrow, J. Polym. Sci. A2, 7, 1651 (1969).

Cited by

  1. Modification of nano-kenaf surface with maleic anhydride grafted polypropylene upon improved mechanical properties of polypropylene composite vol.22, pp.6, 2015, https://doi.org/10.1080/09276440.2015.1048099
  2. Transform Rice Husk and Recycled Polyethylene into High Performance Composites: Using a Novel Compatibilizer to Infiltratively Enhance the Interfacial Interactions vol.32, pp.4, 2015, https://doi.org/10.1177/147776061603200405