• Title/Summary/Keyword: Alkali Accelerator

Search Result 35, Processing Time 0.026 seconds

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

Strength Properties According to the Conditions of Low Carbon Inorganic Composite Using Industrial By-product (산업부산물을 사용한 저탄소 무기결합재의 조건별 강도특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2012
  • The purpose of this study is to examine the potential for reducing the environmental load and $CO_2$ gas when cement is produced by using cement substitutes. These substitutes consisted of blast furnace slag, red mud and silica fume, which were industrial by-products. The most optimum mix was derived when alkali accelerator was added to low carbon inorganic composite mixed with industrial by-product at room temperature. It is determined that hardened properties and the results of compressive strength tests changed based on CaO content, Si/Al, the mixing ratio and the amount of alkali accelerator, curing conditions and W/B. The results of test analysis suggest that the optimum mix of low carbon inorganic composite is CaO content 30%, Si/Al 4, the mixed ratio of alkali accelerator $(NaOH:Na_2SiO_3)$ 50g:50g, the amount of alkali accelerator 100g and W/B 31%. In addition, if contraction is complemented, low carbon inorganic composite with superior performance could be developed.

Strength and Reaction Characteristic of the Hardened Blast Furnace Slag Paste using the Alkali Accelerator (알칼리 자극제를 사용한 고로슬래그 경화체의 반응 및 강도특성)

  • Kim, Yun-Mi;Park, Sun-Gyu;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.313-314
    • /
    • 2013
  • The study carried out the experiment with presenting as the fundamental data for developing non-cement by using red mud generated in blast furnace slag and bauxite generated in the process of manufacturing the pig iron process of manufacturing Al(OH)3/Al2O from as the binding material using the accelerator of NaOH. After fixing the thing and the NaOH adding the blast furnace slag and NaOH 10, 20, 30 (%) with 10, 20, 30 (%) substituted the red mud in the blast furnace slag and the experimental method carried out the experiment. And it measured the flexural strength and compressive strength and took a photograph EDS analysis and SEM. Consequently, the compressive strength was improved as the addition rate of the NaOH was high and the compressive strength according to the replacement ratio of the red mud was degraded. This is determined that film of the blast furnace slag is destroyed and it makes the hydration reaction condition and the intensity is revealed.

  • PDF

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Linings II(II: Application of high-early strength cement in sump water condition) (Permanent Shotcrete Tunnel Linings 구축을 위한 고성능 숏크리트 개발 II (II: 용수부에서의 조강시멘트 적용))

  • 박해균;이명섭;김재권;안병제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.695-702
    • /
    • 2002
  • Shotcrete (or Sprayed concrete) has been used as an important support material in New Austrian Tunnelling Method (NATM). Since the mid of 1990, permanent shotcrete tunnel linings such as Single-shell, NMT (Norwegian Method of Tunnelling) has been constructed in many countries for reducing the construction time and lowing construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of permanent shotcrcte linings, high performance shotcrete providing high strength, high durability, better pumpability has to be developed in advance as an integral component. This paper presents the Ideas and first experimental attempts to increase early strength and bond strength of wet-mixed Steel Fiber Reinforced Shotcrete(SFRS) in sump water condition. In order to increase early strength, a new approach using high-early strength cement with liquid alkali-free accelerator has been investigated From the results, wet-mix SFRS with high-early strength cement and alkali-free accelerator exhibited excellent early strength improvement compared to the ordinary portland content and good bond strength even under sump water condition.

  • PDF

An Experimental Study on the Flowing and Strength Properties of Mortar using Low Carbon Inorganic Binder by Sand Replacement Ratio (잔골재 치환율별 저탄소 무기결합재를 사용한 모르타르의 유동 및 강도 특성에 관한 실험적 연구)

  • Bae, Sang-Woo;Lee, Yun-Seong;Lee, Kang-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.63-64
    • /
    • 2011
  • This study is about the mortar in which fine aggregate is substituted by low-carbon eco-friendly inorganic composite prepared by addition of alkali accelerator in industrial by-products such as blast furnace slag, red mud and silica fume as a replacement for cement. Results of experiments on flow and strength properties in mortar of inorganic composite according to replacement rate of fine aggregate showed that amount of air and table flow decreased as replacement rate of fine aggregate about inorganic composite got higher. Also, it's shown that the compressive strength was the highest at replacement rate 50% of fine aggregate about inorganic composite.

  • PDF

Strength Properties of Alkali-Activated Lightweight Composites with Alkali Activators of Different Types and Amounts (알칼리 자극제의 종류 및 첨가율에 따른 무시멘트 경량 경화체의 강도특성)

  • Lee, Sang-Soo;Kim, Yun-Mi;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.301-307
    • /
    • 2014
  • In order to reduce the emission of carbon dioxide($CO_2$), this research use blast furnace slag in concrete manufacture, as 100% replacement of cement. The aim of this study is to investigate the density and strength properties of alkali-activated lightweight composites with alkali activators of different types and different amounts. The bubble for achieving the lightweight of alkali-activated lightweight composites was generated in the reaction between the paper ash and the alkali activators instead of using a foaming agent. Lightweight formed concrete was conducted basic experimental for determining replacement ratio of paper ash. Then, the density and strength were measured according to the types and the contents of the alkali accelerator that can react with the paper ash. As results, the optimum replacement ratio of the paper ash was 5%. The alkali activator containing NaOH 12.5% obtained the lowest weight of $1.13g/cm^3$. Also, compressive strength were relatively high. Therefore, this study demonstrated that alkali accelerator with a certain amount of NaOH can achieve relatively high strength and lightweight alkali-activated lightweight composites.

Strength Characteristic of Non-cement Matrix using Paper Ash (제지애쉬를 활용한 무시멘트 경화체의 강도 특성)

  • Kim, Yun-Mi;Kim, Heon-Tae;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.196-197
    • /
    • 2013
  • This study is the experiment for manufacturing the Lightweight non-cement matrix based on the Blast furnace slag. And, the matrix was manufactured matrix by generating the bubble just by the reaction of KOH that is the alkali accelerator and paper ash, instead of the general foaming agent, that is the waste managed of incineration the pulp sludge generated in the process of manufacturing the paper. Consequently, the density according to the addition rate of KOH represented the tendency to increase. And it showed up that density of the matrix adding KOH 22.5% was the lowest. As to the strength test result, strength following addition rate of KOH increased. Since the bubble is generated in the reaction of KOH and paper ash, this shows the very low intensity but it is determined to be the result that the amount of vacant space is decreased because the bubble generated in the mixture process comes up as the specific gravity difference.

  • PDF

An experimental study on performance of concrete with constituent materials of shotcrete (숏크리트 구성 재료에 따른 콘크리트 성능에 관한 실험적 연구)

  • Kim, Sang-Myung;Shin, Jin-Yong;Ma, Sang-Jun;Nam, Kwan-Woo;Kim, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • The experiment was carried out to investigate the influence of coarse aggregate, admixture, and accelerator on the properties of concrete. As the maximum size of coarse aggregate decreased from 13 mm to 8 mm, fluidity of fresh concrete declined but compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably. The mechanical properties of concrete substituted silica fume to the plain concrete improved, the compressive strength of that substituted blast furnace slag increased slightly. The hydration reaction and compressive strength of specimen with sodium luminate type accelerator were high at initial, but specimen with alkali free type accelerator improved largely in 28 days.

  • PDF

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.