• Title/Summary/Keyword: Alignment-based design

Search Result 189, Processing Time 0.137 seconds

A Study on the Railway Design of Rectification to linear Alignment Based on Regional and Lines Characteristics (지역 및 노선특성을 고려한 철도 직선화 선형 연구)

  • Lee Hee-Chul;Kim Dal-Sun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.303-308
    • /
    • 2003
  • Without any doubts, the characteristics of regional, lines and lines section have dominating effects on the railway design of rectification to linear alignment. There are basically many types of characteristics: a) geological condition b) operation plan of lines and lines section c) condition of lines facilities level. The conventional deign method were exclusively used to railway design and construction. However, lot the optimum design, the more detail study are required.

  • PDF

Development of Planning Method for Double-Tracking of Single Track Railroad based on the Intelligent Rail Alignment Planning Program (ei-Rail) (지능형철도선형계획 프로그램(ei-Rail) 기반의 단선철도 복선화 계획 기술개발)

  • Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.837-842
    • /
    • 2022
  • The "Intelligent Railroad Alignment Design Program (ei-Rail) developed in 2013 has been adopted in the planning and the evaluation/validation of design results of oversea railroad construction projects. Target countries of Korean railroad industries requires the operating speed increase with alignment improvement and the double tracking of prevailing single track railroads as well as new railroad construction. This study is to develop an additional module for double tracking project of prevailing single track railroads in the ei-Rail. The developed method is based on the geometrics of prevailing railroad, and the definition of planned project determines the project cost based on the unit cost by work type, and provides the draft design of double track. The module was validated with a oversea case. It is then expected for oversea railroad double tracking project more efficiently in planning and the evaluation of design results.

An Analysis of Accuracy for Road Horizontal Alignment by the Combined RTK GPS/GLONASS (RTK GPS/GLONASS 조합에 의한 도로의 평면선형 정확도 분석)

  • Roh, Tae-Ho;Jang, Ho-Sik;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.29-37
    • /
    • 2002
  • Many of the traffic accidents on roads are a result of alignment defect of the roads. This alignment of the road needs to lie analyzed with accuracy for improving design of road, and it needs the design drawing of road, and coordinates of the main point. Accordingly, in this study the precision of location based on existing design drawing was compared with the data acquired by the combination of RTK GPS/GLONASS. The result of study is included within range 5cm, we would like to propose an effective and useful approach method to utilize the satellite for road alignment information system by evaluating the represented road alignment.

  • PDF

Review Study on the Selection of Oversea Railway Alignment (해외철도 노선선정 사례의 검토)

  • Choi, Byoung-Pyo;Kim, Goon-Soo;Kwaun, Young-Chul;Kim, Dong-Ki;Cho, Hee-Su
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.402-406
    • /
    • 2006
  • There are two types of railway alignment design. First type is a modification of existing railway and second type is a planning of whole new alignment. Modification of existing railway would be more simpler, usually, main scope is improving a capacity with adopting standard track gauge, straighten intensively curved part. But planning new alignment should be considered various factors, not only topographic feature, but cultural, socio-economical, environmental factors. This paper is based on the performed project in the United Arab Emirates, the Arabian Peninsular, with Korea railroad corporation, Korea Rail Network Authority, and other skilled Korean design firms participated on May, 2006.

  • PDF

Algorithm-based Railway Tunnel BIM Design Considering Railway Alignment (철도 선형을 고려한 알고리즘 기반의 철도 터널 BIM 설계 방안)

  • Choi, Hyung-Lae;Jang, Kyung-Soo;Kim, Hyouk;Lee, Myeng-Ho;Park, Min-Sang
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In process of creating BIM model for tunnel, many user use still CAD, so the workflow for BIM design is not perfect. Therefore, in this paper, we proposes a method to automatically create BIM model without converting 2D drawings in tunnel design. It can allow engineers to design BIM-based tunnel with maximum use of linear information and modify the BIM model whenever there is changed linear information. To do this, we use Dynamo, which can reduce the time required for creating and modifying BIM models during design changes, saving time wasted for BIM conversion design.

Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement (차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Development of a Vehicle Operating Speed Model and its Application for Designing Consistent Horizontal Alignment (차량 주행속도를 반영한 도로 평면선형설계 기법 연구)

  • Choi, Jai-Sung;Kim, Sang-Youp;Lee, Jeom-Ho;Hwang, Kyung-Sung
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.57-67
    • /
    • 2008
  • At present engineers use the highway design speed concept to develop the horizontal alignment. This concept has a strength of attaining consistent horizontal alignments because of its use of a single speed value. Yet it shows a critical weakness that when opened the operating speed for the vehicles on the road can be a lot different than the design speed. To resolve this, many countries already develop the horizontal alignment by adopting procedures that weigh vehicle operating speeds, and this research joins them by developing an operating speed based horizontal alignment design. We have collected vehicle speed samples over the nation, selected some speed influential design elements by doing a statistical analysis, provided a set of models for two-lane roads and four lane roads, and showed a stepwise feedback procedure by doing a case study. It is underscored that in the case study the proposed procedure has scaled down the speed inconsistency problem, and we are of opinion that our procedure would coin both investment efficiency and speed consistency in future highway projects.

  • PDF

A Study on Satellite Alignment Measurements Accuracy Improvement (인공위성 정렬 측정 정확도 향상을 위한 연구)

  • Choi, Jung Su;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.987-995
    • /
    • 2020
  • Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.

Design and Fabrication of an Automatic Alignment and Loading System for Workpieces (공작물 적재를 위한 자동정렬 및 적재장치의 설계 및 제작)

  • Lee, Jae-Kyung;Choi, Myung-Chul;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.134-140
    • /
    • 2018
  • This paper describes the design and fabrication of an automatic alignment and loading system for workpieces. To move a workpiece to a chucking position of a machine tool using a gantry robot, an automatic aligning device is required to load the workpiece before machining and automatically align them. The automatic alignment system was conceptually designed, and the structural analysis was performed for the main parts such as the top plate, center support, front and back support, and support shaft. Based on the structural analysis results, the size of these structures was determined. The automatic alignment system was manufactured, and the vertical movement characteristics of the workpiece up-and-down movement device and the rotation characteristics of the workpiece rotation device were experimentally examined. The result has confirmed that they operate normally.

3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process (ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석)

  • Shin, Dong-Won;Park, Sang-Jun;Ko, Jae-Pil
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.