• Title/Summary/Keyword: Alignment film

Search Result 328, Processing Time 0.022 seconds

A Study on Liquid Crystal Alignment effects by UV Alignment Method on a Diamond-Like-Carbon Thin Film Surface (Diamond-Like-Carbon 박막표면에 UV 배향법을 이용한 액정 배향 효과에 관한 연구)

  • 황정연;조용민;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.214-218
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a diamond like carbon (DLC) thin film surface A good LC alignment by UV exposure on the DLC thin film surface at 200${\AA}$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the DLC thin film surface was observed at annealing temperature of 180$^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of 200$^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method o the DLC thin film surface can be achieved.

LC Alignment Effects using a-C:H Thin Film as Working Gas at Bias Condition (바이어스 조건하에서 증착한 a-C:H 박막을 이용한 액정배향 효과)

  • 황정연;조용민;서대식;노순준;백홍구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1019-1022
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a-C:H thin film as working gas at 30W rf bias condition. A high pretilt angle of about 5$^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. A good LC alignment by the IB alignment method on the a-C:H thin film surface was observed at annealing temperature of 250$^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of 300$^{\circ}C$. Consequently, the high LC pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the a-C:H thin film surface as working gas at 30W rf bias condition can be achieved.

Investigation of The New LC Alignment Film using $TiO_2$ thin film ($TiO_2$ 박막을 적용한 새로운 액정배향막의 연구)

  • Kim, Sang-Hoon;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Sung-Yeon;Myoung, Jae-Min;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.280-281
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a Titanium dioxide ($TiO_2$) thin film by rf magnetron sputtering system for 15min under various rf power. A very low pretilt angle by ion beam exposure on the $TiO_2$ thin film was measured. A good LC alignment by the ion beam alignment method on the $TiO_2$ thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $250^{\circ}C$. Consequently, the low NLC pretilt angle and the good thermal stability of LC alignment by the ion beam alignment method on the $TiO_2$ thin film by sputter method as various rf power condition can be achieved.

  • PDF

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Rho, Soon-Joon;Lee, Dae-Kyu;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about $4^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • 조용민;황정연;서대식;노순준;이대규;백흥구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about 4$^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of 200$^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of 220$^{\circ}C$ . Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF

Liquid Crystal Alignment Effects using a Diamond-like Carbon Thin Film (Diamond-like Carbon 박막을 이용한 액정 배향 효과)

  • 황정연;조용민;서대식;노순준;이대규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.419-422
    • /
    • 2002
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a diamond like carbon (DLC) thin film. A high pretilt angle of about $3.5^{\circ}$ by ion beam(IB) exposure on the DLC thin film surface was measured. A good LC alignment by the IB alignment method on the DLC thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the DLC thin film surface can be achieved.

Alignment film abrasion caused by rubbing

  • Kamada, Hirokazu;Ihara, Ikuo;Kim, Hong-Dae;Nakayama, Tadachika;Kimura, Munehiro;Akahane, Tadashi
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.173-177
    • /
    • 2011
  • The alignment film abrasion caused by the rubbing process was quantitatively evaluated via atomic-force microscopy (AFM). First, a patterned alignment film structure, which was molded through the imprint method, was artificially formed. Then, the surface topography of the alignment film was evaluated via AFM after rubbing, and the degree of abrasion of the alignment film was estimated by subtracting the value after rubbing from the value before rubbing. It was recognized that the degree of abrasion increased with an increase in the rubbing strength. The relationship between the number of rubbing cycles and the degree of abrasion of the alignment film was also estimated.

Ability of Nitride-doped Diamond Like Carbon Thin Film as an Alignment Layer according to Deposition Methods (배향막으로 사용된 NDLC 박막의 증착방법에 따른 능력)

  • Kim, Young-Hwan;Kim, Byoung-Yong;Oh, Byoung-Yun;Kang, Dong-Hun;Park, Hong-Gyu;Lee, Kang-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.431-431
    • /
    • 2007
  • In this paper, the LC alignment characteristics of the NDLC thin film deposited by PECVD and sputtering were reported respectively. The NDLC thin film deposited using sputter showed uniform LC alignment at the 1200 eV of the ion beam intensity and pretilt angle was about $2^{\circ}$ while the NDLC thin film deposited using the PECVD showed uniform LC alignment and high pretilt angle at the 1800 eV of the ion beam intensity. Concerning the ion beam intensity, uniform LC alignment of the NDLC thin film deposited by the sputtering was achieved at the lower intensity. And the pretilt angle of the NDLC thin film deposited by sputter was higher than those of NDLC thin film that was deposited using the PECVD. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$, respectively. However, NDLC thin film deposited by the PECVD showed stability at high temperature without defects, compared to NDLC thin film deposited by the sputter.

  • PDF

Liquid Crystal Alignment Effects by UV Alignment Method on a Diamond-Like-Carbon Thin Film Surface (Diamond-Like-Carbon 박막표면에 UV 배향법을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Hahn, Eun-Joo;Paek, Seung-Kwon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.526-529
    • /
    • 2002
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a diamond like carbon (DLC) thin film surface. A good LC alignment by UV exposure on the DLC thin film surface at $200\AA$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the DLC thin film surface was observed at annealing temperature of $180^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of $200^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method on the DLC thin film surface can be achieved.

  • PDF

Alignment Effect of a Nematic Liquid Crystal on Deposited SiOx Thin-Film Surface with e-beam Evaporation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • We have studied liquid crystal (LC) aligning capabilities for homeotropic alignment and the control of tilt angles on the $SiO_{x}$ thin film by electron beam evaporation method. A high tilt angle of about $86.5^{\circ}$ was obtained, and also the suitable tilt angle of the NLC on the $SiO_{x}$ thin film at $20{\sim}50\;nm$ thickness with e-beam evaporation can be achieved. The uniform LC alignment on the $SiO_{x}$ thin film surfaces with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $SiO_{x}$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $SiO_{x}$ thin film surface created by evaporation.