Browse > Article
http://dx.doi.org/10.1080/15980316.2011.621310

Alignment film abrasion caused by rubbing  

Kamada, Hirokazu (Department of Electrical Engineering, Nagaoka University of Technology)
Ihara, Ikuo (Department of Mechanical Engineering, Nagaoka University of Technology)
Kim, Hong-Dae (Department of Electrical Engineering, Nagaoka University of Technology)
Nakayama, Tadachika (Department of Electrical Engineering, Nagaoka University of Technology)
Kimura, Munehiro (Department of Electrical Engineering, Nagaoka University of Technology)
Akahane, Tadashi (Department of Electrical Engineering, Nagaoka University of Technology)
Publication Information
Abstract
The alignment film abrasion caused by the rubbing process was quantitatively evaluated via atomic-force microscopy (AFM). First, a patterned alignment film structure, which was molded through the imprint method, was artificially formed. Then, the surface topography of the alignment film was evaluated via AFM after rubbing, and the degree of abrasion of the alignment film was estimated by subtracting the value after rubbing from the value before rubbing. It was recognized that the degree of abrasion increased with an increase in the rubbing strength. The relationship between the number of rubbing cycles and the degree of abrasion of the alignment film was also estimated.
Keywords
rubbing; polyimide; rubbing scratch; abrasion; Vickers hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Mauguin, Bull. Soc. fr. Miner. 34, 71 (1911).
2 B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, Singapore, 1990), Vol. 1, Chap. 7.
3 M.K. Ghosh and K.L. Mittal, Polyimides: Fundamentals and Applications (Marcel Dekker, New York, NY, 1996), Chap. 24.
4 S.W. Lee, S.J. Lee, S.G. Hahm, T.J. Lee, B. Lee, B. Chae, S.B. Kim, J.C. Jung, W.C. Zin, B.H. Sohn, and M. Ree, Macromolecules 38, 4331 (2005).   DOI   ScienceOn
5 N.A.J.M. van Aerle, J. Soc. Inf. Disp. 2, 41 (1994).   DOI   ScienceOn
6 K.-Y. Han and T. Uchida, J. Soc. Inf. Disp. 3, 15 (1995).   DOI
7 D.-H. Chung, Y. Takanishi, K. Ishikawa, H. Takezoe, B. Park, Y. Jung, H.-K. Hwang, S. Lee, K.-J. Han, and S.-H. Jang, Jpn. J. Appl. Phys. 39, L185 (2000).   DOI   ScienceOn
8 H.-K. Hong and C.-R. Seo, Jpn. J. Appl. Phys. 43, 7639 (2004).   DOI
9 W. Zheng, C.-H. Lu, and Y.-C. Ye, Jpn. J. Appl. Phys. 47, 1651 (2008).   DOI
10 H. Tabira, T. Inoue, Y. Yahagi, H. Imayama, and M. Morimoto, J. Soc. Inf. Disp. 10, 329 (2002).   DOI
11 K.-M. Son, S.-K. Kim, J.-W. Lee, S.-Y. Noh, J.-P. Kim, S.-R. Park, J.-Y. Yang, M.-S. Yang, I.-B. Kang, and I.-J. Chung, J. Soc. Inf. Disp. 18, 37 (2010).   DOI
12 H. Seki, Y. Masuda, and T. Uchida, Mol. Cryst. Liq. Cryst. 282, 323 (1996).   DOI   ScienceOn
13 Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J.E. Maclennan, and N.A. Clark, Phys. Rev. E 79, 041701 (2009).   DOI
14 M.P. Mahajan and C. Rosenblatt, J. Appl. Phys. 83, 7649 (1998).   DOI   ScienceOn
15 S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).   DOI   ScienceOn
16 R. Ozaki, T. Shinpo, K.Yoshino, M. Ozaki, and H. Moritake, Appl. Phys. Express 1, 012003 (2008).   DOI   ScienceOn
17 J.-Y. Chun and D.-S. Seo, Jpn. J. Appl. Phys. 49, 040210 (2010).   DOI
18 H. Takahashi, T. Sakamoto, and H. Okada, J. Appl. Phys. 108, 113529 (2010).   DOI   ScienceOn
19 H. Miyajima, T. Arikawa, T. Hidaka, K. Tokuda, and K. Matsumoto, Sens. Actuators A 117, 341 (2005).   DOI   ScienceOn
20 W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).   DOI
21 C. Lee, N.P. Iyer, and H. Han, J. Polym. Sci. B 42, 2202 (2004).   DOI   ScienceOn
22 Y. Sato, K. Sato, and T. Uchida, Jpn. J. Appl. Phys. 31, L579 (1992).   DOI
23 T. Uchida, E.S. Lee, and T. Miyashita, Tech. Rep. IEICE (EID94-86), 94, 327, 47 (1994) (in Japanese).