• 제목/요약/키워드: Algorithm optimization

검색결과 5,708건 처리시간 0.039초

인공신경망을 이용한 상수관망 염소 재투입 스케줄링 최적화 (Optimization of Booster Disinfection Scheduling in Water Distribution Systems using Artificial Neural Networks)

  • 정기문;강두선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.18-18
    • /
    • 2018
  • 상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.

  • PDF

구매종속성을 고려한 근사적 연속검토 재고모형 (Approximate Continuous Review Inventory Models with the Consideration of Purchase Dependence)

  • 박창규;서준용
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.98-108
    • /
    • 2015
  • This paper introduces the existence of purchase dependence that was identified during the analysis of inventory operations practice at a sales agency of dealing with spare parts for ship engines and generators. Purchase dependence is an important factor in designing an inventory replenishment policy. However, it has remained mostly unaddressed. Purchase dependence is different from demand dependence. Purchase dependence deals with the purchase behavior of customers, whereas demand dependence deals with the relationship between item-demands. In order to deal with purchase dependence in inventory operations practice, this paper proposes (Q, r) models with the consideration of purchase dependence. Through a computer simulation experiment, this paper compares performance of the proposed (Q, r) models to that of a (Q, r) model ignoring purchase dependence. The simulation experiment is conducted for two cases : a case of using a lost sale cost and a case of using a service level. For a case of using a lost sale cost, this paper calculates an order quantity, Q and a reorder point, r using the iterative procedure. However, for a case of using a service level, it is not an easy task to find Q and r. The complexity stems from the interactions among inventory replenishment policies for items. Thus, this paper considers the genetic algorithm (GA) as an optimization method. The simulation results demonstrates that the proposed (Q, r) models incur less inventory operations cost (satisfies better service levels) than a (Q, r) model ignoring purchase dependence. As a result, the simulation results supports that it is important to consider purchase dependence in the inventory operations practice.

J2 와 J3 불변량에 기초한 비대칭 항복함수의 제안(II) (Asymmetric Yield Functions Based on the Stress Invariants J2 and J3(II))

  • 김영석;눙엔푸반;안정배;김진재
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.351-364
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. f(J20,J30) ≡ (J20)3 + α(J30)2 + β(J20)3/2 × (J30) = k6 The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum, high strength steel, magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.

니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사 (Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst)

  • 이홍진;김우현;이규복;윤왕래
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.914-920
    • /
    • 2018
  • 본 연구에서는 상용 니켈-알루미나 촉매를 이용한 메탄가스-수증기 개질반응에서의 고유반응속도 상수를 결정하였다. 반응메커니즘을 반영하기 위해 Langmuir-Hinshelwood chemisorption 이론에 기반한 반응속도식을 사용하였고 반응온도($630{\sim}750^{\circ}C$) 및 반응물의 분압(S/C ratio = 2.7~3.5)을 실험변수로 설정하였다. 실험을 통해 얻어진 데이터를 기반으로 효율적인 최적화 알고리즘을 이용하여 최적 고유반응속도상수들을 결정하였다. 최종적으로 제안된 이 수학적 반응 모델은 촉매반응기의 설계 및 운전조건 최적화에 활용 가능하다.

배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구 (A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module)

  • 이승찬;하성규
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.13-20
    • /
    • 2019
  • 본 연구에서는 전기 자동차의 주요 부품 중 하나인, Battery Module의 품질 Issue 및 부품특성 개선을 위해 복합재료를 사용하여 구조보강 하였으며, 단일소재의 단점을 극복할 수 있는 Hybrid 개념의 기구 구조 최적화를 수행하고 성능을 비교하였다. 이를 위해 고전 적층 판 이론(Classical Laminated Plate Theory, CLPT)에 따른 복합재료 주요 설계 변수 도출 및 복합재료 물성 예측 알고리즘에 대해 연구하였으며, 설계된 복합재료의 기계적 물성을 바탕으로 유한요소해석(FEM)을 통해 Battery Module의 성능을 검증하였다. 이를 통해 자동차 Battery 부품의 안정성 및 경량화 등의 부품 특성 개선 여부를 확인할 수 있었다. 최종적으로 검증결과에 따르면 Selective Composite Patch로 보강된 Hybrid Battery Module은 기존 Al Battery Module에 비해 30%의 중량 감소 및 제품 두께 32.5%를 줄일 수 있고, 충격 성능 유지 등 Hybrid 구조의 장점을 입증하였다.

ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼 (One-stop Platform for Verification of ICT-based environmental monitoring sensor data)

  • 채민아;조재혁
    • Journal of Platform Technology
    • /
    • 제9권1호
    • /
    • pp.32-39
    • /
    • 2021
  • 기존 환경측정기기는 전자파 및 친환경 제품 인증, 내구성 시험 위주이며, 센서 신뢰성 검증 및 측정 데이터에 대한 검증은 형식 승인 및 등록, 인수시험, 초기교정, 주기시험 등을 통해 센서 성능평가 위주로 수행된다. 본 플랫폼은 각 타겟 센서별 성능평가 뿐만 아니라 센서의 데이터 신뢰성에 대한 검증체계 지원 ICT 기반 환경 모니터링 센서 신뢰성 검증 체계를 구축하였다. 환경 정보에 대한 센서 데이터를 수집할 센서보드를 제작하였고 센서 및 데이터 신뢰성 평가 및 검증 서비스 체계를 규격화 하였다. 또한, ICT 기반 센서 데이터 신뢰성 평가 및 검증을 위해 LoRa 통신을 이용한 센서 데이터 플랫폼 모니터링 프로토타입을 제작하였고 이를 스마트 시티 등에 실증 테스트하였다. 해당 시스템을 통해 받은 데이터 분석을 위해 머신러닝을 이용하여 최적화 알고리즘 개발하였다. 이를 통해 신뢰성 검증을 위한 센서 빅데이터 분석시스템을 구축하였고 통합 평가 및 검증 시스템의 기반을 마련하였다.

복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구 (Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment)

  • 부옥매;김민영;장종욱
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.50-56
    • /
    • 2020
  • 현재 심층 신경망 이론 및 응용 연구의 빠른 개발로 얼굴 인식의 효과가 향상되고 있다. 그러나 심층 신경망 계산의 복잡성과 탐지 환경의 복잡성으로 인해 얼굴을 빠르고 정확하게 감지하는 방법이 주요 문제가 된다. 이 논문은 FDDB, LFW 및 FaceScrub 공개 데이터 세트를 훈련 표본을 사용하는 단순한 MTCNN 모델을 기반으로 둔다. MTCNN 모델을 분류하고 소개하면서 학습 훈련 속도를 높이고 성능을 향상하는 방법을 모색합니다. 본 논문에서는 다이내믹 이미지 피라미드 기술을 이용하여 기존 이미지 Pyramid 기술을 대체하여 샘플을 분할하고 MTCNN 모델의 OHEM을 훈련에서 제거하여 훈련 속도를 향상시켰다.

EXECUTION TIME AND POWER CONSUMPTION OPTIMIZATION in FOG COMPUTING ENVIRONMENT

  • Alghamdi, Anwar;Alzahrani, Ahmed;Thayananthan, Vijey
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.137-142
    • /
    • 2021
  • The Internet of Things (IoT) paradigm is at the forefront of present and future research activities. The huge amount of sensing data from IoT devices needing to be processed is increasing dramatically in volume, variety, and velocity. In response, cloud computing was involved in handling the challenges of collecting, storing, and processing jobs. The fog computing technology is a model that is used to support cloud computing by implementing pre-processing jobs close to the end-user for realizing low latency, less power consumption in the cloud side, and high scalability. However, it may be that some resources in fog computing networks are not suitable for some kind of jobs, or the number of requests increases outside capacity. So, it is more efficient to decrease sending jobs to the cloud. Hence some other fog resources are idle, and it is better to be federated rather than forwarding them to the cloud server. Obviously, this issue affects the performance of the fog environment when dealing with big data applications or applications that are sensitive to time processing. This research aims to build a fog topology job scheduling (FTJS) to schedule the incoming jobs which are generated from the IoT devices and discover all available fog nodes with their capabilities. Also, the fog topology job placement algorithm is introduced to deploy jobs into appropriate resources in the network effectively. Finally, by comparing our result with the state-of-art first come first serve (FCFS) scheduling technique, the overall execution time is reduced significantly by approximately 20%, the energy consumption in the cloud side is reduced by 18%.

분해옵션 포함 서비스부품 로트사이징 휴리스틱 (A Heuristic for Service-Parts Lot-Sizing with Disassembly Option)

  • 장진명;김화중;손동훈;이동호
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.24-35
    • /
    • 2021
  • Due to increasing awareness on the treatment of end-of-use/life products, disassembly has been a fast-growing research area of interest for many researchers over recent decades. This paper introduces a novel lot-sizing problem that has not been studied in the literature, which is the service-parts lot-sizing with disassembly option. The disassembly option implies that the demands of service parts can be fulfilled by newly manufactured parts, but also by disassembled parts. The disassembled parts are the ones recovered after the disassembly of end-of-use/life products. The objective of the considered problem is to maximize the total profit, i.e., the revenue of selling the service parts minus the total cost of the fixed setup, production, disassembly, inventory holding, and disposal over a planning horizon. This paper proves that the single-period version of the considered problem is NP-hard and suggests a heuristic by combining a simulated annealing algorithm and a linear-programming relaxation. Computational experiment results show that the heuristic generates near-optimal solutions within reasonable computation time, which implies that the heuristic is a viable optimization tool for the service parts inventory management. In addition, sensitivity analyses indicate that deciding an appropriate price of disassembled parts and an appropriate collection amount of EOLs are very important for sustainable service parts systems.

절대안정도를 보장하는 최적 PID 제어기 설계에 관한 연구 (A Study on Optimal PID Controller Design Ensure the Absolute Stability)

  • 조준호
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.124-129
    • /
    • 2021
  • 본 논문에서는 절대 안정도를 보장하는 최적의 제어기 설계에 대해 제안하였다. 논문의 적용 순서는 지연시간의 포함여부를 판단하고, 지연시간이 포함되었을 경우 Pade 근사법을 통해서 지연시간을 근사화 한다. 그 다음 공정모델과 제어기 전달함수에 대한 개루프 전달함수를 구하며, Routh-Hurwitz 판별법에 의해서 절대 안정도 구간을 계산한다. 마지막 단계에서는 앞 단계에서 구한 구간을 활용하여 유전자 알고리즘으로 최적의 PID 제어파라미터 값을 구한다. 그 결과 제안 된 방법은 안정성이 보장되며, 최적의 제어기를 설계하여 기존의 방법보다 성능 지표에서 우월함을 확인하였다. 향후 지연시간에 대한 보상방법이 연구된다면 더욱 좋은 성능지표를 얻을 것으로 판단된다.