• 제목/요약/키워드: Algorithm Element

검색결과 2,132건 처리시간 0.024초

군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구 (A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm)

  • 전진영
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명 (Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications)

  • 안범모;김영진;신현정;김정
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.

선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발 (A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System)

  • 김인일;최중효;조학종;서흥원
    • 한국CDE학회논문집
    • /
    • 제10권1호
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

유전자 알고리즘에 의한 소나 배열 소자의 허용오차 분석 (Analysis of Error Tolerance in Sonar Array by the Genetic Algorithm)

  • 양수화;김형동
    • 한국음향학회지
    • /
    • 제22권6호
    • /
    • pp.496-504
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘을 이용하여 빔 패턴 오차의 허용범위를 만족하는 개별소자의 허용오차를 분석하였다. 기존의 수치적 통계방법은 배열소자의 개수증가에 따라 계산량이 증가하는 문제점이 있고 이를 보완하기 위해 제안된 Monte-Carlo 방법은 낮은 정밀도와 빔 패턴 합성으로의 확장이 어렵다는 한계점을 가지고 있어 본 논문에서는 이러한 단점을 극복하기 위해 유전자 알고리즘을 이용한 소나 배열 소자의 허용오차 분석법을 제안하였다. 제안된 알고리즘을 이용하여 1차원과 2차원 배열에서 주어진 빔 패턴 오차 허용범위를 만족하는 각 소자별 허용오차 범위를 분석하였고 모의실험을 통하여 소나 배열 소자의 허용오차 범위가 타당함을 검증하였다.

대형 유한요소 고유치 해석에서의 부공간 축차법 효율 개선 (Improvement of Computational Efficiency of the Subspace Iteration Method for Large Finite Element Models)

  • 주병현;이병채
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.551-558
    • /
    • 2003
  • An efficient and reliable subspace iteration algorithm using the block algorithm is proposed. The block algorithm is the method dividing eigenpairs into several blocks when a lot of eigenpairs are required. One of the key for the faster convergence is carefully selected initial vectors. As the initial vectors, the proposed method uses the modified Ritz vectors for guaranteering all the required eigenpairs and the quasi-static Ritz vectors for accelerating convergency of high frequency eigenvectors. Applying the quasi-static Ritz vectors, a shift is always required, and the proper shift based on the geometric average is proposed. To maximize efficiency, this paper estimates the proper number of blocks based on the theoretical amount of calculation in the subspace iteration. And it also considers the problems generated in the process of combining various algorithms and the solutions to the problems. Several numerical experiments show that the proposed subspace iteration algorithm is very efficient, reliable ,and accurate.

원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링 (Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation)

  • 김정식;김정
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.19-24
    • /
    • 2008
  • 본 논문은 원격제어(teleoperation)시스템에서 카메라로부터의 실시간 영상정보를 이용하여 조작대상이 되는 물체의 물리기반모델(physically-based model)을 만들고 이를 기반으로한 햅틱 렌더링 알고리즘의 개발에 관한 것이다. CCD 카메라를 통한 영상정보와 물성치(mechanical properties)를 이용하여 변형체(deformable object)의 물리적 기반 모델이 구현되고 햅틱장치로 조종되는 평면 로봇(planar robot)을 제어하여 변형체에 변형을 가하면 구현된 물리적 모델에 의해 햅틱 피드백을 위한 반력값이 계산된다. 스네이크 알고리즘을 이 용하여 영상정보로부터 변형체의 외형정보(geometry information)를 추출하며, 변형체의 경계(boundary)에서의 반력값을 계산하기 위해 경계요소법(boundary element method)을 사용한다. 제안된 햅틱 렌더링 알고리즘을 이용하여 원격조작간에 힘센서를 사용하지 않고 사용자에게 햅틱 피드백을 제공할 수 있다.

  • PDF

UWB 시스템을 위한 RS(23,17) 복호기 최적 설계 (An Optimized Design of RS(23,17) Decoder for UWB)

  • 강성진;김한종
    • 한국통신학회논문지
    • /
    • 제33권8A호
    • /
    • pp.821-828
    • /
    • 2008
  • 본 논문에서는 UWB 시스템에서 사용되는 RS(23,17)부호의 복호기를 최적화하여 설계하였다. 제안된 복호기는 파이프 라인 구조를 갖는 수정된 유클리드(pipeline structured - modified Euclidean) 알고리즘을 사용한다. 먼저, 기존의 PE 블록 구조를 수정하여 효율적인 PE 블록 구조를 제안하고, 차수(degree) 계산이 필요 없는 복호 알고리즘을 제안한다. 또한, Chien 탐색 알고리즘, Forney 알고리즘, FIFO 크기를 UWB 규격에 최적화 시켜, 작은 복호 지연(latency) 및 하드웨어 복잡도를 가지도록 하였다. 제안된 복호기는 Verilog HDL을 사용하여 구현되었고, 삼성 65nm library를 이용하여 합성한 결과, 실제 ASIC을 제작했을 경우에 250MHz정도까지는 동작이 보장된다고 볼 수 있으며, gate count는 17,628이다.

3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구 (A Research on the Measurement of Human Factor Algorithm 3D Object)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

고장전류의 누적 에너지를 이용한 저압직류 배전계통의 고저항 지락고장 검출 알고리즘 개발 (Development of an Algorithm for Detecting High Impedance Fault in Low Voltage DC Distribution System using Accumulated Energy of Fault Current)

  • 오윤식;노철호;김두웅;권기현;한준;김철환
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.71-79
    • /
    • 2015
  • Recently, new Low Voltage DC (LVDC) power distribution systems have been constantly researched as uses of DC in end-user equipment are increased. As in conventional AC distribution system, High Impedance Fault (HIF) which may cause a failure of protective relay can occur in LVDC distribution system as well. It, however, is hard to be detected since change in magnitude of current due to the fault is too small to detect the fault by the protective relay using overcurrent element. In order to solve the problem, this paper presents an algorithm for detecting HIF using accumulated energy in LVDC distribution system. Wavelet Singular Value Decomposition (WSVD) is used to extract abnormal high frequency components from fault current and accumulated energy of high frequency components is considered as the element to detect the fault. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed algorithm using ElectroMagnetic Transient Program (EMTP) software. Simulation results considering various conditions show that the proposed algorithm can be utilized to effectively detect HIF.

버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발(I) -선형 해석- (Development of Algorithm for 2-D Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (I) -Linear Analysis-)

  • 정순완;김승조
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.1004-1014
    • /
    • 2001
  • The fully automatic algorithm from initial finite element mesh generation to remeshing in two dimensional geometry is introduced using bubble packing method (BPM) for finite element analysis. BPM determines the node placement by force-balancing configuration of bubbles and the triangular meshes are made by Delaunay triangulation with advancing front concept. In BPM, we suggest two node-search algorithms and the adaptive/recursive bubble controls to search the optimal nodal position. To use the automatically generated mesh information in FEA, the new enhanced bandwidth minimization scheme with high efficiency in CPU time is developed. In the remeshing stage, the mesh refinement is incorporated by the control of bubble size using two parameters. And Superconvergent Patch Recovery (SPR) technique is used for error estimation. To verify the capability of this algorithm, we consider two elasticity problems, one is the bending problem of short cantilever beam and the tension problem of infinite plate with hole. The numerical results indicate that the algorithm by BPM is able to refine the mesh based on a posteriori error and control the mesh size easily by two parameters.