• Title/Summary/Keyword: Algorithm Element

Search Result 2,118, Processing Time 0.029 seconds

Triangular Mesh Generation Algorithm for Generating Nodes and Triangular Elements Concurrently (절점과 요소의 동시 생성을 위한 삼각 요소 알고리즘)

  • 천재홍;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.207-214
    • /
    • 2000
  • For last 20 years, a number of researches and developments on finite element mesh generation has been carried out and most of them are comported of node generation part and node generation part. However these algorithms are inefficient in mesh veneration process and difficult to control the shape of elements when comparing with the generation of nodes and elements concurrently. In this study, therefore, an algorithm it proposed to generate nodes and elements concurrently for various two-dimensional objects having multiple holes. Inner node generation is performed by choosing three consecutive boundary nodes and comparing them with other close boundary nodes. As soon as inner nodes are determined, element generation is conducted based on the comparison of the distances among the generated inner nodes, three consecutive boundary nodes and other close boundary nodes. the generated element nodes become new boundary nodes for further repeated process. The processes are repeated through out each region until three consecutive boundary nodes finally form a tirangular element.

  • PDF

3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화)

  • ;Yao Yingying
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.

Development of Automatic Node Generation Algorithm and Preprocessing Technique for $\rho$-Version Finite Element Program ($\rho$-Version 유한요소 프로그램을 위한 자동절점생성 알고리즘 및 전처리 기법 개발)

  • 조준형;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.69-76
    • /
    • 1998
  • Due to the drastic improvement of computer hardware and operating system, it is easy to break through the main defects of limited computer memory and processing time, etc. To keep up with this situation, this paper is focused on developing the preprocessor program with the input method based on vector graphic editor and the preprocessing technique including automatic node generation algorithm for the $\rho$-version finite element program. To develop this preprocessor program, the special data structure and the OOP(Object Oriented Programming) have been used by the Visual Basic 4.0. The Special data structure is proposed to describe the geometric data of node numberings and coordinates suitable for the $\rho$-version finite element program, which are quite different from the comvential h-version finite element program.

  • PDF

Finite Element Model Updating and Vibration Analysis of PMDC Motor Rotor System (영구자석형 직류전동기 축계의 유한요소모델 개선과 진동해석)

  • Kim, Y.H.;Ha, J.Y.;Lee, J.G.;Kim, S.H.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • In this paper, finite element modeling was performed for vibration analysis of a rotor system installed in sunroof motor, and analysis process was developed for natural frequency and unbalance response analysis. At the same time, to reduce analysis modeling error caused by the difference between analysis and measured values, finite element model updating was conducted using an optimization algorithm, i.e. hybrid genetic algorithm and simulated annealing (HGASA) method. For this end experimental modal test was carried out and by using the measured frequency response function (FRF), model updating was performed considering both cases where core coil was removed and included. And acceptable result was obtained. Also, dynamic property coefficient of bush bearing which influences vibration response of the rotor system was estimated.

  • PDF

Design of Low Frequency Flat Speaker by Piezofilm (Piezofilm 을 이용한 저주파 평면 스피커의 설계)

  • Hwang, Joon-Seok;Lee, Sung;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this study, experimental verification of performance of flat speaker has been conducted. The piezofilm (PVDF) actuator has been designed to prevent the distortion of sound and make the frequency response of radiated sound flat. The electrode pattern of piezofilm actuator is optimized to satisfy the design objective. The formulation of design method is based on the coupled finite element and boundary element method and electrode pattern is optimized by genetic algorithm. The flat speaker with optimized piezofilm actuator has been manufactured. The sound pressure level at the distance of 50cm is measured using microphone and compared with the result of numerical simulation.

  • PDF

An Adaptive Algorithm for Array System in the Presence of Faulty Element

  • Kim, Ki M.;Il W. Cha;Dae H. Youn
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.156-159
    • /
    • 1996
  • Element failure occurs with high probability for every array used in the real world ; that is, it is a common phenomenon that there are one or more elements with no output. Element failure produces an elevated sidelobe level and fails to reject the interference signals in an adaptive beamformer. In this paper, we present the adaptive beamforming algorithm for array with element failure. The presented method minimizes the array output power subject to a set of linear constraints which maintain the frequency response in the look direction and force the weights of the inoperative elements to zero. Numerical results have been included.

  • PDF

Automatic decomposition of unstructured meshes employing genetic algorithms for parallel FEM computations

  • Rama Mohan Rao, A.;Appa Rao, T.V.S.R.;Dattaguru, B.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.625-647
    • /
    • 2002
  • Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Optimal Design of Direct-Driven Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS) (DEAS를 이용한 직접구동형 풍력발전기 최적설계)

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Kim, Eun-Su;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.24-33
    • /
    • 2008
  • Optimal design of the direct-driven PM Wind Generator, combined with DEAS(Dynamic Encoding Algorithm for Searches) and FEM(Finite Element Method), has been proposed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, DEAS contributes to reducing the excessive computing time for the optimization process.

Efficient Implementation of Morphological Filters by Structuring Element Decomposition (형태소 분해를 통한 형태학적 필터의 효율적 구현)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1419-1424
    • /
    • 1999
  • In order to implement morphological filters on image processing systems, the size of structuring element must be small due to the architectural constraints of the systems, which requires the decomposition of structuring element into small elements for the filters with large structuring elements. In this paper, an algorithm for decomposition of structuring element with no restriction on the shape and size is developed which enables sub-optimal implementation of any morphological filter on 3X3 pipeline machine. The given structuring element is first decomposed into the union of elements using sequential search procedure, then each element is further decomposed optimally into 3X3 elements, resulting in final sub-optimal 3$\times$3 hybrid decomposition. The proposed algorithm is applied to some structuring elements and the results close to the optimum are obtained.

  • PDF

Design Sensitivity Analysis for Shape Optimization of Electromagnetic Device with Finite Element Method (설계민감도해석과 FEM에 의한 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.835-837
    • /
    • 2002
  • This paper presents a shape optimization algorithm of electromagnetic devices using the design sensitivity analysis with FEM. The design sensitivity and adjoint variable formulas are derived for the 3D FEM with edge element. This algorithm is applied to 3D electro-magnet pole shape optimization problem to make a uniform flux density at the target region.

  • PDF