• Title/Summary/Keyword: Alginate Bead

Search Result 138, Processing Time 0.04 seconds

Spherical and cylindrical microencapsulation of living cells using microfluidic devices

  • Hong, Joung-Sook;Shin, Su-Jung;Lee, Sang-Hoon;Wong, Edeline;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.157-164
    • /
    • 2007
  • Microencapsulation of cells within microfluidic devices enables explicit control of the membrane thickness or cell density, resulting in improved viability of the transplanted cells within an aggressive immune system. In this study, living cells (3T3 and L929 fibroblast cells) are encapsulated within a semi-permeable membrane (calcium crosslinked alginate gel) in two different device designs, a flow focusing and a core-annular flow focusing geometry. These two device designs produce a bead and a long microfibre, respectively. For the alginate bead, an alginate aqueous solution incorporating cells flows through a flow focusing channel and an alginate droplet is formed from the balance of interfacial forces and viscous drag forces resulting from the continuous (oil) phase flowing past the alginate solution. It immediately reacts with an adjacent $CaCl_2$ drop that is extruded into the main flow channel by another flow focusing channel downstream of the site of alginate drop creation. Depending on the flow conditions, monodisperse microbeads of sizes ranging from $50-200\;{\mu}m$ can be produced. In the case of the microfibre, the alginate solution with cells is extruded into a continuous phase of $CaCl_2$ solution. The diameter of alginate fibres produced via this technique can be tightly controlled by changing both flow rates. Cell viability in both forms of alginate encapsulant was confirmed by a LIVE/DEAD cell assay for periods of up to 24 hours post encapsulation.

Screw Pumping System을 이용한 Algiante bead의 생산

  • Ryu, Ji-Seong;Lee, Yun-Jong;Yun, Yeong-Sil;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.750-753
    • /
    • 2003
  • A method for the mass production was designed by using a screw pumping system that can supply safe bifidobacteria. To prevent the inhibition of cell activity, various additives, which are able to preserve pore of an alginate bead, were used. When materials are sterilized, viscosity decreased below 300cp. Adding bifidobacteria, viscosity increased to 300cp. We manufactured various extrusion nozzles and tested mass productivity of the alginate bead. As a result, 18G, 4mm length sylinge with 13 multi-nozzle showed the best productivity which was about $308{\pm}3ea/min$.

  • PDF

Immobilization of Nitrifier Consortium for the Removal of Ammonium Ion in the Recirculating Aquaculture System (양어장수내의 암모니아성 질소제거를 위한 질화세균군의 고정화)

  • KIM Sung-Koo;SEO Jae-Koan;LEE Jong-Seok;KONG In-Soo;SUH Keun-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.816-822
    • /
    • 1997
  • The immobilization of a microorganism has been rapidly progressed with the development of biotechnology in recent years. Although it has been used as a tool to isolate products from biological media in various areas, it has not yet been practiced in the treatment of waste water. In this paper, we suggest a possibility to apply the immobilization technique In the recirculating aquaculture system. We examined the ability of $NH_4^+$ removal by nitrifier consortium immobilized in $Ba^{++}-alginate$, k-carrageenan and agar bead at the concentration of 50 g/L, respectively. In order to use the immobilized nitrifier consortium as media in the fludized bed reactor, the strength of bead was measured. $Ba^{++}-alginate$ as a support material showed higher strength of bead. Also, the nitrifier consortium immobilized in $Ba^{++}-alginate$ showed higher nitrification activity that could remove 20 mg/L ammonium ion than those immobilized in other two support materials, carrageenan and agar. The immobilized nitrifier consortium showed better nitrification activity than free nitrifier consortium.

  • PDF

Removal of Cadmium Ion (Cd2+) by Pseudomonas aeruginosa Immobilized in Ca-Alginate Gel Beads in Packed-Bed Column Reactor (충전층 반응기내에서 고정된 Pseudomonas aeruginosa에 의한 Cd2+의 제거)

  • Choi, Kwang Soo;Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.217-222
    • /
    • 2002
  • The effects of initial cadmium ion concentrations (50, 100, 200, 300ppm), and feeding velocities (30, 45, 60mL/hr) on the removal ratio of cadmium ion by Pseudomonas aeruginosa ATCC 27853 immobilized in Ca-alginate gel beads in a packed-bed column reactor were investigated at operating temperature $37^{\circ}C$. The removal ratio of cadmium ion with variable initial concentration was decreased in the following order : 50ppm > 100ppm > 200ppm > 300ppm. The optimum removal conditions of cadmium ion by Pseudomonas aeruginosa ATCC 27853 were initial concentration 50ppm, feeding velocity 30mL/hr.

  • PDF

Production of Acrylic Acid from Acrylonitrile by Immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99

  • Shen, Mei;Zheng, Yu-Guo;Liu, Zhi-Qiang;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.582-587
    • /
    • 2009
  • Immobilized cells of Arthrohacter nitroguajacolicus ZJUTB06-99 capable of producing nitrilase were used for biotransformation of acrylonitrile to acrylic acid. Six different entrapment matrixes were chosen to search for a suitable support in terms of nitrilase activity. Ca-alginate proved to be more advantageous over other counterparts in improvement of the biocatalyst activity and bead mechanical strength. The effects of sodium alginate concentration, $CaCl_2$ concentration, bead diameter, and ratio by weight of cells to alginate, on biosynthesis of acrylic acid by immobilized cells were investigated. Maximum activity was obtained under the conditions of 1.5% sodium alginate concentration, 3.0% $CaCl_2$ concentration, and 2-mm bead size. The beads coated with 0.10% polyethylenimine (PEI) and 0.75% glutaraldehyde (GA) could tolerate more phosphate and decrease leakage amounts of cells from the gel. The beads treated with PEI/GA could be reused up to 20 batches without obvious decrease in activities, which increased about 100% compared with the untreated beads with a longevity of 11 batches.

Effect of Skim Milk-Alginate Beads on Survival Rate of Bifidobacteria

  • Yu, Won-Kyu;Yim, Tae-Bin;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • In this study, an attempt was made to increase the survival rate of bifidobacteria entrapped in alginate in the gastrointestinal tract, and to investigate the potential industrial applications, for example lyophilized capsules and yogurt. First, the protective effect of various food additives on bifidobacterial survivability was determined after exposure to simulated gastric juices and bile salts. The additives used in this study were skim milk (SM), polydextrose (PD), soy fiber (SF), yeast extract (YE), chitosan (CS), $\kappa$-carageenan ($\kappa$-C) and whey, which were added at 0.6% concentration (w/v) to 3% alginate-bifidobacterial solution. In the simulated gastric juices and bile salts, the protective effect of 0.6% skim milk-3% alginate (SM-A) beads on the survival rate of bifidobacteria proved to be higher than the other additives. Second, the hydrogen ion permeation was detected through SM-A vessel without bifidobacterial cells at different SM concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). There were no differences in terms of the pH decrease in SM-A vessels at 0.6%, 0.8%, and 1.0% (w/v) SM concentrations. The survival rate of bifidobacteria in SM-A beads would appear to be related to the SM buffering capacity against hydrogen ions and its tendency to reduce the pore size of bead. In this experiment, the survival rate of bifidobacteria entrapped in beads containing 0.6% SM showed the highest viability after exposure to simulated gastric juices for 3h, thereby indicating that 0.6% SM is the optimum concentration fir 3% alginate bead preparation. Third, the effect of SM-A beads on the freeze-drying and yogurt storage for 10 days was investigated. SM-A beads were found to be more efficient for freeze drying and yogurt storage than untrapped cells and the alginate bead. Consequently, the survival rate of bifidobacteria entrapped in SM-A beads was increased in simulated gastric juices, bile salts and probiotic products, such as lyophilized capsules and yogurt, SM-A beads can be expected to produce high value probiotic products.

  • PDF

Immobilized Condition of Suchwowces cerevisiae for Ethanol Production from Persimmon Juice. (감 즙으로부터 에탄을 생산을 위한 Saccharomyces cerevisiae의 고정화 조건)

  • 이상원;손미예;서권일
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.221-227
    • /
    • 1999
  • The immobilized culture system of Saccharomyces cerevisiae was examined to improve the efficiency of vinegar production from persimmon juice. Optimum concentration of Na-alginate for the immobilization was 2%. When the 1eakage of yeast from get beads was checked by turbidity of culture medium with varying concentration of Na-alginate from 1 to 4%, turbidity of culture medium increased from 8 hrs of cultivation with 1% Na-alginate concentration showing optical density of 0.82 at 20 hrs. However, the increase in turbidity of culture medium was slow with 2-4% Na-alginate showing optical density of 0.55-0.58 at 20 hrs. Microscopical analysis of gel matrix showed that the immobilized yeast was grown well regardless of Na-alginate concentration. Optimum size of gel bead and amount of inoculation were 2-3 m and 33mg, respectively. For ethanol production aerobic cultivation for 121hrs using cohen plug followed by anaerobic cultivation using silicon plug equipped with a check valve was the most effective.

  • PDF

Immobilization of Agarase for the Agarooligosaccharide Production (한천올리고당의 생산을 위한 한천분해효소의 고정화)

  • 임동중;김봉조;배승권;김종덕;공재열
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.208-214
    • /
    • 1999
  • The condition for immobilization of the partially purified agarase from Bacillus cereus ASK202 and the properties of the immobilized enzyme have been investigated. Agarase was immobilized on various supports by entrapment method. The enzyme immobilized on Na-alginate bead showed the highest activity among those studied. The optimal reaction conditions of the immobilized agarase were obtained in 3%(w/v) Na-alginate for the matrix, bead diameter of 2.5mm, 1 unit of agarase solution and 1.0%(w/v) calcium chloride solution. The optimum pH and temperature of the immobilized agarase were pH and temperature of the immobilized agarase were pH 7.0 and 4$0^{\circ}C$, respectively. Km and Vmax values were 0.5mg/ml.min, respectively. The immobilized agarase conerted agar to agarobiose, and their total conversion ratio under the optimal condition was 89%.

  • PDF

Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms ($UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과)

  • 김중곤;신용국;이영상;김용호;김시욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The killing effects of two types(one-phase reactor and two-phase reactor) of UV-TiO$_2$photocatalytic system on the microorganisms have been studied. The UV-lamp which emits maximum 39 watts at 254 nm was prepared in these system. Three types of $TiO_2$ coating method were adopted. One type is thin film coated form on the quartz tube in the reactor and another one is surface rough coated form on the glass bead. The other one is $TiO_2$-mixed alginate bead form. UV irradiation was carried out for 1 min. In case of one phase reactor, the bactericidal efficiencies of E. coli by $TiO_2$-coated quartz tube and $TiO_2$-coated glass bead were 63.2% and 89.9%, respectively. In the air-bubbling system, the bactericidal efficiency was 95%, however, the efficiency decreased to 90.6% in the non-bubbling system. In the $TiO_2$-mixed alginate bead system, bactericidal efficiency was 86%. When $H_2O$$_2$ was treated (10, 15, 20, and 25 mg/ι) to the $TiO_2$-coated glass bead reactor, bactericidal efficiency significantly increased according to the concentration of $H_2$$O_2$. Two phase reactor showed more elevated efficiency. E. coli was more sensitive to the reaction than S. cerevisiae.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.