Browse > Article
http://dx.doi.org/10.4014/jmb.0808.499

Production of Acrylic Acid from Acrylonitrile by Immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99  

Shen, Mei (Institute of Bioengineering, Zhejiang University of Technology)
Zheng, Yu-Guo (Institute of Bioengineering, Zhejiang University of Technology)
Liu, Zhi-Qiang (Institute of Bioengineering, Zhejiang University of Technology)
Shen, Yin-Chu (Institute of Bioengineering, Zhejiang University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.6, 2009 , pp. 582-587 More about this Journal
Abstract
Immobilized cells of Arthrohacter nitroguajacolicus ZJUTB06-99 capable of producing nitrilase were used for biotransformation of acrylonitrile to acrylic acid. Six different entrapment matrixes were chosen to search for a suitable support in terms of nitrilase activity. Ca-alginate proved to be more advantageous over other counterparts in improvement of the biocatalyst activity and bead mechanical strength. The effects of sodium alginate concentration, $CaCl_2$ concentration, bead diameter, and ratio by weight of cells to alginate, on biosynthesis of acrylic acid by immobilized cells were investigated. Maximum activity was obtained under the conditions of 1.5% sodium alginate concentration, 3.0% $CaCl_2$ concentration, and 2-mm bead size. The beads coated with 0.10% polyethylenimine (PEI) and 0.75% glutaraldehyde (GA) could tolerate more phosphate and decrease leakage amounts of cells from the gel. The beads treated with PEI/GA could be reused up to 20 batches without obvious decrease in activities, which increased about 100% compared with the untreated beads with a longevity of 11 batches.
Keywords
Acrylic acid; acrylonitrile; Arthrobacter nitroguajacolicus; nitrilase; calcium alginate; polyethylenimine;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Idris, A. and W. Suzana. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123   DOI   ScienceOn
2 Kawaguti, H. Y., M. F. Buzzato, and D. C. Orsi. 2006. Effect of the additives polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production. Process Biochem. 41:2035-2040   DOI   ScienceOn
3 Park, S. W., S. J. Park, S. J. Han, J. Lee, D.-S. Kim, J.-H. Kim, B. W. Kim, J. Lee, and S. J. Sim. 2007. Repeated batch production of epothilone B by immobilized Sorangium cellulosum. J. Microbiol. Biotechnol. 17: 1208-1212   과학기술학회마을   PUBMED   ScienceOn
4 Graham, D., R. Pereira, D. Bareld, and D. Cowan. 2000. Nitrile biotransformation using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb. Technol. 26: 368-373   DOI   ScienceOn
5 Hann, E. C., A. E. Sigmund, and S. M. Hennessey. 2002. Optimization of an immobilized-cell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. 6: 492-496   DOI   ScienceOn
6 Chen, J., Y. G. Zheng, and Y. C. Shen. 2008. Biosynthesis of Pmethoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 43:978-983   DOI   ScienceOn
7 Zheng, R. C., Y. S. Wang, Z. Q. Liu, L. Y. Xing, Y. G. Zheng, and Y. C. Shen. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res. Microbiol. 158:258-264   DOI   ScienceOn
8 Li, G. Y., K. L. Huang, and Y. R. Jiang. 2007. Production of (R)-mandelic acid by immobilized cells of Saccharomyces cerevisiae on chitosan carrier. Process Biochem. 42: 1465-1469   DOI   ScienceOn
9 Straathof, A. J. J., S. Sie, and T. T. Franco. 2005. Feasibility of acrylic acid production by fermentation. Appl. Microbiol. Biotechnol. 67: 727-734   DOI   ScienceOn
10 Won, K., S. Kim, and K. J. Kima. 2005. Optimization of lipase entrapment in Ca-alginate gel heads. Process Biochem. 40:2149-2154   DOI   ScienceOn
11 Park, H.-J., K.-N. Uhm, and H.-K. Kim. 2008. R-Stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide J. Microbiol. Biotechnol. 18: 552-559   PUBMED
12 Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107-118   DOI   ScienceOn
13 Kabaivanova, L., E. Dobreva, and P. Dimitrov. 2005. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J. Ind. Microbiol. Biotechnol. 32: 7-11   DOI   ScienceOn
14 Shinde, M., C. K. Kim, and T. B. Karegoudar. 1999. Production of salicylic acid from naphthalene by immobilized Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 9: 482-487
15 Kaul, P., A. Banerjee, and U. C. Banerjee. 2006. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7: 1536-1541   DOI   ScienceOn
16 Martinkova, L., N. Klempier, I. Prepechalova, V. Prikrylova, M. Ovesna, H. Griengl, and V. Kren. 1998. Chemoselective biotransformation of nitrites by Rhodococcus equi A4. Biotechnol. Lett. 20: 909-912   DOI   ScienceOn
17 Vekova, J., L. Pavlu, J. Vosahlo, and J. Gabriel. 1995. Degradation of bromoxynil by resting and immobilized cells of Agrobacterium radiobacter 8/4 strain. Biotechnol. Lett. 17: 449-452   DOI   ScienceOn
18 Woo, C. J., K. Y. Lee, and T. R. Heo. 1999. Improvement of Bifidobacterium longum stability using cell-entrapment technique. J. Microbiol. Biotechnol. 9: 132-139   과학기술학회마을   ScienceOn
19 Cooling, F. B., S. K. Fager, R. D. Fallon, P. W. Folsom, F. G. Gallagher, J. E. Gavagan, et al. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B Enzym. 11: 295-306   DOI   ScienceOn
20 Banerjee, A., P. Kaul, and U. C. Banerjee. 2006. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77-87   DOI   ScienceOn