• 제목/요약/키워드: Alginate Bead

검색결과 138건 처리시간 0.03초

Pseudomonas aeruginosa BYK-2의 균체고정화법을 이용한 생물유화제의 생산

  • 정혜성;김학주;하순득;황선희;구헌서;공재열
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.378-381
    • /
    • 2000
  • The optimal conditions and properties for the immobilization of marine bacterium Pseudomonas aeruginosa BYK-2 have been determined. For the high productioon of biosurfactant, Na-alginate, PVA, modified PVA were used as a carrier. The optimal emulsifying activity on immobilized Pseudomonas aeruginosa BYK-2 showed 1036Unit (about 2.2g/L biosurfactant) in Basal salt medium(B.S.M.) at $25^{\circ}C$, 100rpm. Ca-alginate was selected the optimal bead among PVA, modified PVA and Ca-alginate. The optimal cell load in alginate bead was 10 gCWW/100g carrier. As the results of incubation of immobilized 5g Ca-alginate bead (conditions; 3% alginate, bead diameter: 2.3mm, 10% cell load) in 50m1 production medium, The emulsifying activity of 1407Unit, about 3.0g/L biosurfactant was obtained from immobilized cell after cultivation of 92hr at $25^{\circ}C$, 100rpm.

  • PDF

알긴산 나트륨이 장용코팅된 란소프라졸 제제의 저장안정성 및 용출률에 미치는 영향에 관한 연구 (The Effect of Sodium Alginate Coating on the Storage Stability and Dissolution Rate of Enteric Coated Lansoprazole)

  • 김정훈;오정민;강길선;정제교;이정식;정상영;이해방
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.277-284
    • /
    • 2002
  • Lansoprazole, pharmaceutics for acid-related diseases, is unstable in low pH environments and generally coated with enteric polymer to obtain gastroresistance in stomach. Because its storage stability is influenced by acidic substitutes of enteric polymer, alkaline chemicals wεre generally addεd to dosage form as a stabilizer. In this experience, we coated lansoprazole bead with sodium alginate and evaluated the effect of bead size and sodium alginate coating on the storage stability and dissolution profile of lansoprazole. Sodium alginate solution containing lansoprazole was sprayed as a droplet into 3% (w/v) $CaCl_2$ solution and the resultant bead was coated with starch, sodium alginate, and hydroxypropyl methylcellulose phthalate. The content of lansoprazole granule not coated with sodium alginate decreased to 57.96% of initial content when stored at a severe condition for 4 weeks, but that of lansoprazole granule coated with sodium alginate before enteric coating decreased little and as the thickness of sodium alginate film increased, the content of bead didn't decreased for 4 weeks. Sodium alginate film also improved the gastroresistance without much influencing the maximum dissolution rate.

Improvement of Bifidobacterium longum Stability Using Cell-Entrapment Technique

  • Woo, Chang-Jae;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권2호
    • /
    • pp.132-139
    • /
    • 1999
  • A cell-entrapment technique using compressed air was applied to Bifidobacterium longum KCTC 3128 for the improvement of bifidobacteria viability. The main cell-entrapment matrix used was alginate, and viability improvement of the B. longum entrapped in alginate lattices was monitored along with the effects of other additional biopolymers. A prerequisite for acquiring consistent results was the uniformity of bead size and cell distribution which was achieved by using compressed air and mixing the cell suspension with sterilized alginate powder, respectively. The viability losses of the B. longum entrapped in alginate beads in the presence of three different substances logarithmically increased in relation to the reaction time, and proportionately decreased with an increased alginate concentration and bead diameter. The strongest improvement in B. longum viability was exhibited with a bead containing 3% alginate and 0.15% xanthan gum.

  • PDF

Sphericity Optimization of Calcium Alginate Gel Beads and the Effects of Processing Conditions on Their Physical Properties

  • Woo, Jin-Wook;Rob, Hye-Jin;Park, Hyun-Duck;Ji, Cheong-Il;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.715-721
    • /
    • 2007
  • In this study, the sphericity of calcium alginate gel beads was optimized using response surface methodology. The optimum conditions for bead sphericity were a concentration of 2.24% sodium alginate, a flow rate of 0.059 mL/sec for the sodium alginate solution, and a 459 rpm rotation for the calcium chloride solution. The predicted and experimental bead sphericities under the optimum conditions were 94.5 and 96.7%, respectively, showing close agreement. We also investigated the processing condition effects for the physical properties of the optimized calcium alginate gel beads. Immersion in hot water slightly decreased bead size and rupture strength. NaCl treatment increased bead size and decreased rupture strength. While the pH of the calcium chloride solution had little effect on bead sphericity, the bead sizes and gel strengths decreased with longer times in each pH solution. The beads coated with pectin and glucomannan showed no significant changes in sphericity, but their sizes decreased with time. The coated beads showed higher rupture strengths than the uncoated beads.

편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성 (Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil)

  • 윤두수;이응재
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.557-562
    • /
    • 2018
  • 본 연구에서는 편백 오일을 함유한 고분자 알지네이트(HMWSA)/저분자 알지네이트(LMWSA)의 각 조성비를 달리하여 알지네이트 함량에 따라 비드를 제조하였으며 고분자알지네이트/저분자알지네이트 함량에 따른 알지네이트 비드의 직경과 모폴로지 및 방출특성을 관찰하였다. 고분자 알지네이트(HMWSA)와 저분자 알지네이트(LMWSA)비드 제조 시 교반속도와 농도의 변화에 따른 지름변화 및 표면 특성 등을 광학현미경으로 이용하여 확인하였다. 또한 피톤치드/알지네이트 비드에서 편백 오일 방출 거동에 대해서는 UV/Vis. spectrometer를 사용하여 그 특성을 조사하였다. 본 실험에서 제조된 피톤치드/알지네이트 비드의 평균 입자 크기는 교반 속도가 증가하면서 그 크기가 작아짐을 알 수 있었고, 가교제 역할을 하는 $CaCl_2$ 용액의 농도가 증가할수록 비드의 크기가 작아짐을 확인 할 수 있었다. 피톤치드/알지네이트 비드의 표면 모폴로지 확인 결과에서 저분자 알지네이트의 함량이 증가할수록 부드러운 표면이 거칠게 변화하는 것을 확인 할 수 있었다. 이러한 결과들은 피톤치드/알지네이트 비드 표면에서 친수성그룹들이 증가했으며, 또한 피톤치드/알지네이트에서 피톤치드 오일 방출속도가 증가되었기 때문이다.

미생물(微生物) 고정화(圖定化)에 관한 연구(硏究) - 제1보(第1報). Lactobacillus 균(菌)의 고정화조건(圖定化條件) - (Immobilization of Microorganisms - Part 1. Preparation of Immobilized Lactobacillus bulgaricus -)

  • 이강흡
    • Applied Biological Chemistry
    • /
    • 제24권2호
    • /
    • pp.149-152
    • /
    • 1981
  • Lactobacillus bulgaricus 균체(菌體)의 고정화방법(圖定化方法)으로서 polyacrylamide gel과 Al- Ca-, Fe- 및 Mg-alginate bead에 대하여 고찰하고 이중 가장 활성이 좋은 것은 Ca-alginate bead 이었으며 입경(粒經) 2m/m로 형성시킨 Ca-alginate bead로 고정화(圖定化)시킨 균류(菌類)의 경우, 4.5% lactose 용액 및 whey에서의 lactose 분해실험 결과, 생균(生菌)에 대비(對比)한 상대적 활성은 각각 최고 28% 및 18% 이었다.

  • PDF

Effect of Biochar bead on Adsorption of Heavy Metals

  • Kim, Ho-Jin;Lee, Hochul;Kim, Hyuck-Soo;Kim, Kye-Hoon
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.351-355
    • /
    • 2014
  • In recent years, biochar has received much attention as soil amendment, enhancing soil fertility and reducing toxicity of heavy metals with its large specific surface area and high pH. Biochar has also the effect of alleviating global warming by carbon sequestration from recycling organic wastes by pyrolysis. However, scattering of fine particles of biochar is a hindrance to expand its use from human health point-of-view. Alginate, a natural polymer without toxicity, has been used for capsulation and hydrogel fabrication due to its cross-linking nature with calcium ion. In this study, the method of cross-linkage between alginate and calcium ion was employed for making dust-free biochar bead. Then an equilibrium adsorption experiment was performed for verifying the adsorption effect of biochar bead on heavy metals (cadmium, copper, lead, arsenic, and zinc). Results showed that biochar bead had effects on adsorbing heavy metals, especially lead, except arsenic.

다양한 구조를 가진 알긴산-피브로인 비드 제조 (Preparation of Alginate-fibroin Beads with Diverse Structures)

  • 이진실;이신영;허원
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.422-426
    • /
    • 2011
  • Alginate bead has been supplemented with various polymers to control permeability and to enhance mechanical strength. In this report, fibroin-reinforced alginate hydrogel was prepared, in which spatial localization of fibroin molecules was investigated. Confocal laser scanning microscopy revealed that fibroin molecules formed a fibrous network in the alginate-fibroin beads, which was expected to enhance mechanical strength as same as in many composite materials. Uniaxial compression test showed that fibroin-reinforced alginate beads had increased mechanical strength only after methanol treatment that caused ${\beta}$-sheet formation among fibroin molecules. Simultaneous curing and dialysis of alginate beads were carried out to remove excesscalcium but to retain fibroin in the dialysis chamber, which fabricated beads without internal fibrous fluorescent stains. Fibroin molecules were only found beneath the surface of the beads. The fibroin-diffused shell was further processed to form a thick wall after drying or was mobilizedto the centre of the bead by methanol treatment. Accordingly, the structure analyses provide processing methods of fibroin to form a wall or center clumps, which could be applied to design controlled delivery device.

Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착 (Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger)

  • 방병호
    • Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.185-190
    • /
    • 2001
  • 알긴산은 일반적으로 미생물의 고정화에 널리 사용되는 biopolymer이다. 본 연구는 구연산 생산균인 Aspergillus niger를 calcium alginate로 고정화한 beads로 납의 흡착 특성을 조사하였다. A. niger beads는 $CaCl_2$를 사용하여 주사기로 제조하였으며 이 beads를 납제거에 이용하였다. 그 결과는 다음과 같다. 즉, A. niger를 구연산 생성배지에서 1일에서 7일까지 배양한 후 제조한 beads로 납흡착량을 측정한 결과는 3일간 배양된 곰팡이 beads에서 가장 높았다. 발아되지 않은 beads와 3일간 배양된 beads로 시간에 따른 납흡착량을 정량한 결과 30분까지는 그 흡착량이 동일하게 급격히 증가하였으며 그 후 발아되지 않은 beads는 더 이상 흡착이 일어나지 않았으나 3일간 배양된 곰팡이 beads는 시간이 지남에 따라 천천히 계속 흡착하여 1시간 후에는 480 ppm까지 흡착하였다. 납흡착시 최적 pH와 온도는 각각 6과 $35^{\circ}C$로 나타났다. 납용액 50 ml (500 ppm)이 든 250 ml 삼각플라스크에 beads $50{\sim}100$개가 최적이었으며 그 이상에서는 납흡착율이 감소하였다. 중금속에 대한 흡착율은 납> 구리> 카드뮴 순이었으며 0.1 M $CaCl_2$, 0.1 M NaOH 및 0.1 M KOH의 전처리의 효과는 없었으며 0.1 HCI로 곰팡이 bead의 납탈착하여 beads를 재사용이 가능하였다.

  • PDF

Alginate-Microfibers Produced by Self-Assembly in Cell Culture Medium

  • Park, Jeong-Hui;Shin, Ueon-Sang;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.431-433
    • /
    • 2011
  • Alginate microfibers were fabricated by self assembly of alginate monomers exuded from alginate beads (~2 mm in diameter) containing calcium phosphate. Upon incubation of the beads in cell culture medium at $37^{\circ}C$ for a few days, fibers with a diameter of about $7{\mu}m$ started to sprout from the bead surface, and these grew up to about 10 mm in length, resulting in the beads being covered with fiber forests similar to chestnut bur. The combined system of the alginatebased microfiber forest and bead is considered to be useful as a novel 3-dimensional scaffold for cell culture and tisssue growth.