DOI QR코드

DOI QR Code

Alginate-Microfibers Produced by Self-Assembly in Cell Culture Medium

  • Park, Jeong-Hui (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Shin, Ueon-Sang (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Kim, Hae-Won (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School)
  • Received : 2010.08.25
  • Accepted : 2010.11.23
  • Published : 2011.02.20

Abstract

Alginate microfibers were fabricated by self assembly of alginate monomers exuded from alginate beads (~2 mm in diameter) containing calcium phosphate. Upon incubation of the beads in cell culture medium at $37^{\circ}C$ for a few days, fibers with a diameter of about $7{\mu}m$ started to sprout from the bead surface, and these grew up to about 10 mm in length, resulting in the beads being covered with fiber forests similar to chestnut bur. The combined system of the alginatebased microfiber forest and bead is considered to be useful as a novel 3-dimensional scaffold for cell culture and tisssue growth.

Keywords

References

  1. Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J. Nature 2000, 408, 998. https://doi.org/10.1038/35050141
  2. Jang, J. H.; Castano, O.; Kim, H. W. Adv. Drug Deliv. Rev. 2009, 61, 1065. https://doi.org/10.1016/j.addr.2009.07.008
  3. Smidsrød, O.; Skjak-Braek, G. Trends Biotechnol. 1990, 8, 71. https://doi.org/10.1016/0167-7799(90)90139-O
  4. Orive, G.; Tam, S. K.; Pedraz, J. L.; Halle, J. P. Biomaterials 2006, 27, 3691. https://doi.org/10.1016/j.biomaterials.2006.02.048
  5. Eiselt, P.; Yeh, J.; Latvala, R. K.; Shea, L. D.; Mooney, D. J. Biomaterials 2000, 21, 1921. https://doi.org/10.1016/S0142-9612(00)00033-8
  6. Amsden, B.; Turner, N. Biotechnol. Bioeng. 1999, 65, 605. https://doi.org/10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C
  7. Khotimchenko, Y. S.; Kovalev, V. V.; Savchenko, O. V.; Ziganshina, O. A. Marine Pharmacol. 2001, 27, 53.
  8. Qin ,Y. Polym. Int. 2008, 57, 171. https://doi.org/10.1002/pi.2296
  9. Qin, Y. Textile Res. J. 2005, 75,165. https://doi.org/10.1177/004051750507500214
  10. Grant, G. T.; Morris, E. R.; Rees, D. A.; Smith, P. J. C.; Thom, D. FEBS Lett. 1973, 32,195. https://doi.org/10.1016/0014-5793(73)80770-7
  11. Fridrikh, S. V.; Yu, J. H.; Brenner, M. P.; Rutledge, G. C. Phys. Rev. Lett. 2003, 90, 144502. https://doi.org/10.1103/PhysRevLett.90.144502
  12. Bashur, C. A.; Dahlgren, L. A.; Goldstein, A. S. Biomaterials 2006, 27, 5681. https://doi.org/10.1016/j.biomaterials.2006.07.005
  13. Luginbuehl, V.; Wenk, E.; Koch, A.; Gander, B.; Merkle, H. P.; Meinel, L. Pharm. Res. 2005, 22, 940. https://doi.org/10.1007/s11095-005-4589-9
  14. Tampieri, A.; Sandri, M.; Landi, E.; Celotti, G.; Roveri, N.; Mattioli- Belmonte, M.; Virgili, L.; Gabbanelli, F.; Biagini, G. Acta Biomater. 2005, 1, 343. https://doi.org/10.1016/j.actbio.2005.01.001

Cited by

  1. Immunotoxicity of Copper Alginate Fibers in Guinea Pigs and Mice vol.144, pp.1-3, 2011, https://doi.org/10.1007/s12011-011-9133-7
  2. A novel method for producing bi-component thermo-regulating alginate fiber from phase change material microemulsion vol.90, pp.9, 2011, https://doi.org/10.1177/0040517519886075