• Title/Summary/Keyword: Algebraic fiber space

Search Result 3, Processing Time 0.018 seconds

Algebraic Fiber Space Whose Generic Fiber and Base Space Are of Almost General Type

  • Fukuda, Shigetaka
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • We assume that the existence and termination conjecture for flips holds. A complex projective manifold is said to be of almost general type if the intersection number of the canonical divisor with every very general curve is strictly positive. Let f be an algebraic fiber space from X to Y. Then the manifold X is of almost general type if every very general fiber F and the base space Y of f are of almost general type.

THE NIELSEN THEOREM FOR SEIFERT FIBERED SPACES OVER LOCALLY SYMMETRIC SPACES

  • RAYMOND, FRANK
    • Journal of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.87-93
    • /
    • 1979
  • In this note the geometric realization of a finite group of homotopy classes of self homotopy equivalences by a finite group of diffeomorphisms is investigated. In order for this to be accomplished an algebraic condition, which guarantees a certain group extension exists, must be satisfied. It is shown for a geometrically interesting class of aspherical manifolds, called injective Seifert fiber spaces over a locally symmetric space, that this necessary algebraic condition is also sufficient for geometric realization.

  • PDF