• Title/Summary/Keyword: Algal growth

Search Result 410, Processing Time 0.025 seconds

Algae and Nutrient Removal by Vegetated Artificial Floating Island (인공식물섬에 의한 조류(Algae)및 영양염류의 제거)

  • Park, Sun-Koo;Cho, In-Ki;Kwon, Oh-Byung;Mun, Jung-Soo;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.93-98
    • /
    • 2008
  • We investigated the effect on the removal of BOD, SS, TN and TP and algal growth inhibition of Vegetated Artificial Floating Island (VAFI), by examining microorganism activity and nutrient uptake in the batch test of various conditions: (1) Blank (Control group), (2) VAFI of $0.25m^2$, (3) AFI of $0.25m^2$ which has no vegetation, (4) buoyant plate of $0.25m^2$, (5) buoyant plate of $0.25m^2$ with linear media. The proportion of BOD removal in the VAFI, AFI, buoyant plate and buoyant plate with media were 82.7, 80.8, 45.2% and 59.6% respectively. TN removal in the VAFI, AFI and buoyant plate with media were 51.2, 31.7% and 25.1% respectively. TP removal in the VAFI, AFI, buoyant plate and buoyant plate with media were 23.3, 16.7, 10.0% and 13.3% respectively. Chlorophyll-${\alpha}$ removal in the VAFI was 97.9%. The factors of chlorophyll-${\alpha}$ removal in the VAFI accounted for the shading effect of 35.1%, microorganisms activity of 61%, and plant root of 1.8%.

Analysis of Bacterial Community Structure Using FISH in the Juam Reservoir (FISH법으로 분석한 주암호의 세균군집구조)

  • Park, Ji-Eun;Yeo, Sang-Min;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.219-225
    • /
    • 2006
  • Bacterial community structure in the Juam Reservoir was analysed using fluorescent in situ hybridization (FISH) technique from April 2005 to January 2006. Total bacterial numbers varied in the range of 1.58 ${\sim}\;2.73{\times}\;10^6\;cells\;mL^{-1}$ proportional to the concentration of chi-a and had the minimal value in January. The ratios of ${\alpha}\;{\cdot}\;{\beta}\;{\cdot}\;{\gamma}$-subclass proteobacteria and Cytophaga-Flavobacterium (CF) group to total bacteria ranged from 45.1% to 77.5%, and the ratios of ${\alpha}\;{\cdot}\;{\beta}\;{\cdot}\;{\gamma}$-subclasses to total bacteria in June and September with the concentration of chi-a measured were lower than those ratios in April and January. It suggests that enriched growth of Microcystis aeruginosa may inhibit the metabolic activlty of ${\alpha}\;{\cdot}\;{\beta}\;{\cdot}\;{\gamma}$-subclass proteobacteria. However, the ratio of CF group bacteria represented no large change depending on algal bloom. In terms of nitrifying bacteria, the numbers of ammonia-oxidizing bacteria ranged from 9.9 ${\times}\;10^4\;to\;25.5\;{\times}10^4\;cells\;mL^{-1}$ with sharp fluctuation whereas those of nitrite-oxidizing bacteria varied in 8.7${\sim}9.8{\times}10^4\;cells\;mL^{-1}$ without noticeable change except the maximal value of $20.3{\times}10^4\;cells\;mL^{-1}$ in January maybe due to the high DO.

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea (Landsat 8 이미지영상을 이용한 영양염류농도 추정; 금강을 대상으로)

  • Lim, Jisang;Baik, Jongjin;Kim, Hyunglok;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.79-90
    • /
    • 2015
  • In this study, the water quality parameters of Geum-river were estimated using Landsat 8 satellite image data which had launched in March 2013. The goal of this research is to predict HAB and to monitor spatial pattern of total nitrogen (TN) and total phosphorus (TP) because both TN and TP are the dominant factors of the growth of harmful algal blooms (HABs). To investigate the relationship between satellite band reflectance and in situ measurement value, Pearson' correlation coefficient analysis was used. The band2, 3, 4 and 5 reflectance values among 11 bands of Landsat 8 were used which was highly associated with detecting TN and TP. The 20 in situ data set with satellite's overpass time were identified. TN showed positive relation with band 2 (0.48), band3 (0.62), band4 (0.57) at a significance level of p<0.05. TP also showed high correlation for band2 (0.59), band3 (0.59), band4 (0.58) at a significance level of p<0.01. The optimal regression equation models were constructed for TN and TP based on multiple regression equations. The estimated concentration based on derived regression equations of TN and TP were compared with in situ measurement data. Finally, the spatial pattern of the two parameters was able be monitored through mapping on November 12, 2013 and April 21, 2014.

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species (미세조류 4종의 성장, CO2 동화 및 지질 생성 특성)

  • Shin, Chae Yoon;Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.547-555
    • /
    • 2020
  • Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

Development of Mass Proliferation Control Algorithm of Phytoplankton Using Artificial Neural Network (인공신경망을 이용한 식물플랑크톤의 대량 증식 제어 알고리즘 개발)

  • Seonghwa Park;Jonggu Kim;Minsun Kwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.435-444
    • /
    • 2023
  • Suitable environmental conditions in Saemangeum frequently favor phytoplankton growth. There have been occurrences of sudden phytoplankton blooms, surpassing the algae management standards. A model was designed to prevent such blooms using scientific predictive techniques to forecast and regulate the possibility of phytoplankton blooms. We propose effective and efficient algae control measures concerning every phytoplankton species optimized through the policy control of nutrients (DIN, PO4-P) from rivers and controlling lake salinity using gate operations. The probability of phytoplankton blooms was initially forecast using an artificial neural network algorithm based on observations. The model's Kappa number fluctuated from 0.7889 to 1.0000, indicating good to excellent predictive power. The Garson algorithm was then utilized to assess the significance of explanatory variables for every species. Meanwhile, the probability of phytoplankton blooms was anticipated depending on the DIN and salinity value changes. Therefore, the model predicted the precise DIN and salinity concentrations to inhibit phytoplankton blooms for each species. Hence, the green algae model can create effective proactive measures to avoid future phytoplankton blooms in enormous artificial lakes.

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay (청계만 식물플랑크톤 크기구조의 계절적 변동)

  • Ji, Sung;Sin, Yong-Sik;Soh, Ho-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.

Properties of Dissolved Organic Carbon (DOC) released by Three Species of Blue- green Algae (남조류에 의해 배출된 용존유기탄소의 특성)

  • Choi, Kwang-Soon;Imai, Akio;Kim, Bom-Chul;Matsushige, Kazuo
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.20-29
    • /
    • 2001
  • The amount, chemical composition and optical property of extracellular dissolved organic carbon (EOC) by phytoplankton were examined using axenic cultures of Microcystis aeruginosa, Anabaena flos-aquae, and Oscillatoria agardhii. The extracellular organic matter was categorized into five fractions (hydrophobic acids; AHSs, hydrophobic neutrals; HoNs, hydrophilic acids; HiAs, hydrophilic bases; HiBs, and hydrophilic neutrals; HiNs) using three adsorbent resins(XAD-8, cation, and anion). The release pattern and chemical composition of EOC varied with algal species and their growth phases. Percentage of extracellular release increased with age in all cultures. HiAs were the dominant component of EOC in all cultures, whereas the proportion of HiAs decreased with age in all cultures. In contrast, the proportions of HiBs and HiNs increased as cultures aged. In particular, the HiN fraction increased from 0% to 44% of EOC in M. aeruginosa and from 3.0% to 28% in A. flos-aquae, respectively. The proportion of AHSs was higher in the cultures of A. flos-aquae(7.5${\sim}$16%) and O. agardhii (8.7${\sim}$16%) than M. aeruginosa(0.2${\sim}$2.5%). The proportions of AHSs increased with culture age in M. aeruginosa and O. agardhii, but decreased in A. flos-aquae. The specific UV absorbance also varied among species; 1.9 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for M. aeruginosa, 3.7 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for A. flos-aquae, and 13.0 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L^{-1}$ for O. agardhii. The results of this study indicates that DOC excreted by three blue-green algae differed with species and the growth phase.

  • PDF