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Abstract : Suitable environmental conditions in Saemangeum frequently favor phytoplankton growth. There have been occurrences of sudden phytoplankton 

blooms, surpassing the algae management standards. A model was designed to prevent such blooms using scientific predictive techniques to forecast and 

regulate the possibility of phytoplankton blooms. We propose effective and efficient algae control measures concerning every phytoplankton species 

optimized through the policy control of nutrients (DIN, PO4-P) from rivers and controlling lake salinity using gate operations. The probability of 

phytoplankton blooms was initially forecast using an artificial neural network algorithm based on observations. The model's Kappa number fluctuated 

from 0.7889 to 1.0000, indicating good to excellent predictive power. The Garson algorithm was then utilized to assess the significance of explanatory 

variables for every species. Meanwhile, the probability of phytoplankton blooms was anticipated depending on the DIN and salinity value changes. 

Therefore, the model predicted the precise DIN and salinity concentrations to inhibit phytoplankton blooms for each species. Hence, the green algae 

model can create effective proactive measures to avoid future phytoplankton blooms in enormous artificial lakes.
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요    약 : 새만금 내에서는 종종 식물플랑크톤이 증식하기에 알맞은 환경조건이 생성되며 일시에 식물플랑크톤 대증식이 발생하면서 조

류 관리기준을 초과하는 사례가 발생하고 있다. 이를 대비하기 위하여 과학적 예측기법을 토대로, 식물플랑크톤의 종별로 가장 효과적이

고 효율적인 녹조발생 억제 방안을 제안하기 위하여 식물플랑크톤 대증식 가능성을 예측하고, 제어할 수 있는 모델을 개발하였다. 즉, 하

천에서 유입하는 영양염(DIN, PO4-P)을 정책적으로 조절하고, 갑문운영을 통해 호 내 염분을 제어하는 것이다. 먼저 관측치로부터 인공신

경망 알고리즘을 이용해 식물플랑크톤 대증식 가능성을 예측 결과, 모델의 Kappa 수는 0.7889 ~ 1.0000의 범위로, good ~ excellent 수준이었

다. 다음으로 Garson 알고리즘을 이용하여 종별로 설명변수의 중요도를 평가하였고, 또한 DIN 및 염분 값의 변화에 따른 식물플랑크톤 대

량 증식 확률을 예측하였다. 그 결과, 각 종별로 식물플랑크톤의 대증식을 억제할 수 있는 DIN과 염분 농도를 정량적으로 예측할 수 있었

다. 따라서, 향후 새만금과 같은 거대한 인공 호수에서 식물플랑크톤의 대증식을 억제하기 위한 효율적이고 효과적인 대응방안을 마련할 

수 있도록 녹조제어모델을 활용할 수 있을 것으로 판단된다.

핵심용어 : 새만금, 식물플랑크톤, 조류대증식, 인공신경망, 녹조제어
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1. Introdution

The water quality of Saemangeum Lake is deteriorating due to 

eutrophication, as nutrient-rich freshwater inflows from nearby 

industrial complexes and the Saemangeum Seawall (33km) was 

completed in April 2006, and seawater distribution is not sufficient. 

The distribution of seawater for this deteriorated water quality is 

carried out through the Sinsi Gate and Garyeok Gate installed on 

the Saemangeum Seawall, which creates suitable environmental 

conditions for phytoplankton to grow, and there have been cases of 

phytoplankton blooms that exceed the algae management standards. 

Damage caused by green and red tides due to this bloom is a 

concern.

There are studies on the distribution of phytoplankton in 

Saemangeum Lake, and Kim et al. (2009) reported changes in 

phytoplankton communities and distinct seasonal cycles due to 

semi-diurnal tidal coupling in the lower section of the Mankyeong 

River before the construction of the Saemangeum Seawall 

(1999~2000). In addition, Jang et al. (2009) reported a decrease in 

the number of species and an increase in the abundance of 

phytoplankton communities compared to previous studies based on 

surveys at a fixed station near Mankyeong Bridge immediately 

after the completion of the Saemangeum seawall (2006-2007). Yeo 

(2010) monitored the biomass of phytoplankton, which is the core 

of the green and red tide problem in the study area, in terms of 

abundance (cells/ml) for a long period of time (2001-2010). As a 

result, the temporal and spatial variability of the study area was 

examined by dividing the study area into rivers, artificial lakes, 

and seas. It has been reported that frequent algae blooms occurred 

in the streams flowing into Saemangeum Lake, and that the 

planned waters of Mankyeong Lake and Dongjin Lake experienced 

rapid changes in phytoplankton abundance due to changes in 

freshwater and seawater inputs and seasonal changes (Yeo, 2012), 

and although several studies have been reported, there is a lack of 

research on the prediction and analysis of phytoplankton according 

to the distribution of seawater.

Various water quality problems, including harmful algal bloom, 

are occurring worldwide in river-type lakes where sufficient 

nutrients are supplied at the time when water temperature and light 

conditions suitable for algae growth are formed. Direct problems 

caused by the massive proliferation of algae include the toxicity of 

species such as cyanobacteria (Codd et al., 2005; Lehman et al., 

2005), the increased production of volatile organic compounds 

(VOC) by algae, resulting in bad taste in water supply (Watson, 

2004), clogging of filter paper by diatoms (Jun et al., 2001), and 

human health threats and aesthetic effects due to toxins (Lee et al., 

2013; Dencheva, 2010; Li et al., 2011).

In Korea, the algae warning system was piloted in Daecheong 

Lake in 1996 and expanded to 22 lakes nationwide in 2012 (Lee 

et al., 2012a), and since 2012, a water quality forecasting system 

has been implemented for the main stretches of the four major 

rivers for the purpose of proactive water quality management by 

predicting short-term changes in water temperature and Chl-a 

concentration (Lee et al., 2012b). Since May 2020, an algae 

prediction system has been implemented and operated by 

integrating the water quality forecasting system and the algae 

warning system to predict changes in water quality and algae 

outbreaks in public waters (MOE Order No. 1456).

To prevent this, studies have been reported on phytoplankton 

prediction in rivers and lakes. Looking at international cases, 

Recknagel et al. (1994) built an algae bloom prediction model 

using water quality data observed for 12 years as input to an 

artificial neural network, Wilson and Recknagel (2001) built an 

algae bloom prediction model using water quality data observed 

for 12 years as input to an artificial neural network and 

conducted model validation, and Karula et al. (2000) built a 

eutrophication neural network prediction model with a Levenberg- 

Marquardt (tangent-sigmoid) structure to analyze and predict Chl-a 

considering various water quality factors. Singh et al. (2009) built 

a DO and BOD prediction model using BPNN to predict DO and 

BOD, respectively, for water quality management in rivers.

In Korea, Ahn et al. (2001) performed monthly water quality 

predictions for DO, BOD, and TN at Gongju Branch of the 

Geumgang River Basin using the BP algorithmic neural network 

model and examined its applicability by comparing it with the 

ARIMA model, and Oh et al. (2002) built an optimal water quality 

prediction model through monthly water quality predictions for 

each water quality element using the BP algorithmic neural 

network model with DO, BOD, TN, and TP data from the 

Yeongsan River Basin. Lee and Seo (2002) conducted monthly 

water quality predictions of BOD, TN, and TP concentrations using 

the WASP5 model to identify the effects on the inflow water 

quality of Daecheong Lake. Park and Ha (2003) used Genetic 

Algorithm and Neural Network (GANN) to predict the monthly 

water quality of DO, BOD, TN, and TP concentrations in the Naju 

branch of Yeongsan River, and Cho et al. (2004) used BP 

algorithm neural network model to predict BOD, TN, TP, and 

TOC concentrations in the Naesacheon and Pyeongchang River 
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basins within the Chungju Lake basin in real time. Ahn et al. 

(2000), used the BP algorithm neural network model to build an 

intelligent monthly water quality prediction model using each 

water quality data of the Dalcheon branch of the Han River basin 

and verified its applicability. Oh et al. (2008) developed a daily 

prediction model for runoff, TOC, and TOC load at the Naju 

branch of the Yeongsan River basin using the BPNN model. It 

was also used for the development and application of algae 

simulation techniques using chlorophyll-a concentration and cell 

counts by algae species in Lake Uiam in the midstream of the 

Bukhan River (Choi et al., 2015). However, it is difficult to apply 

it to Saemangeum, which has the characteristic that seawater is 

distributed through locks.

Meanwhile, Park et al. (2023) demonstrated using taxonomic 

statistics that salinity, including phototrophic salinity, is linked to 

the presence of phytoplankton. Consequently, they deduced that 

algal blooms' likelihood could be affected by shifts in salinity via 

the drainage gate.

This study does not aim to quantitatively predict the abundance 

or biomass of phytoplankton. Rather, it uses a classification 

approach to predict the probability of algal blooms. Using this 

approach to derive quantitative amounts of each controlling factor, 

allows for the calculation of the concentration of salts that can 

inhibit algal blooms. Algae blooms are significantly influenced by 

nutrients. With that said, predicting the probability of algae blooms 

using machine learning algorithms can allow for calculating the 

concentration of nutrients that can suppress algae blooms. In 

summary, this study aims to propose the most effective and 

efficient algae bloom suppression measures for each species of 

phytoplankton at each point in Saemangeum based on scientific 

prediction techniques.

2. Material and Method

2.1 Algal bloom control model design

The model is designed for future data accumulation. Data is 

collected in real-time or intermittently, and the collected data is 

preprocessed and stored in a data archive. The user selects a target 

species and a training dataset to predict it. The model predicts the 

probability of an algae bloom, which is then calibrated based on 

the model's confidence in the target species. Once you have the 

confidence, you select the variables you want to control and use 

algebra to predict the quantitative amount of the variable that will 

suppress algae growth. The final decision is whether to control or 

not, and the variable is controlled based on the result.

In this study, the observed data of 2021 were preprocessed and 

stored in the data archive, and a training dataset was created to fit 

the model using an artificial neural network algorithm. The training 

dataset of the model consists of 2,556 rows with 45 columns, 

including vertex, observation date, water quality, species abundance, 

month, temperature, precipitation, insolation, and evaporation. 

Using this, the model was fitted for each species, and the 

quantitative value of the target variable that reduces the probability 

of phytoplankton blooms was predicted by substituting the 

explanatory variables and the target data (DIN, Salinity).

Fig. 1. Flow chart of algae control model.

2.2 Data and preprocessing

The data used in the model were observed once or twice a 

month from January to November 2021, including 10 months 

(January 25, February 22, March 24, April 26, May 19, June 29, 

July 13, August 9, September 8, October 13, and November 1) and 

survey during summer rainfall (August 29 and September 30). A 

total of seven observation locations (Fig. 2) were selected based on 

the water quality measurement network points in Saemangeum 

Lake, which are being investigated by the Jeonbuk Provincial 

Environment Agency.

An Ocean Seven 310 CTD from Idronaut (Italy) was used for 

the observations, and the specifications of the instrument are 

presented in Table 1.
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item measuring range precision resolution

Salinity 0~70mS/cm 0.005mS/cm 0.001mS/cm

Temperature -3~50℃ ±0.005℃ ±0.0005℃

Pressure 0~1000dbar 0.05% 0.0015%

Table 1. Specifications of CTD observation device

Fig. 2. Inner and outer observation vertices in Saemangeum.

The target phytoplankton are Skeletonema spp., Cyclotella 

atomus, Stephanodiscus, Chaetoceros spp. Phormidium tenue. To 

compensate for the lack of data prior to model design, a piecewise 

cubic Hermitian polynomial interpolation was used, which captures 

the motion of the data well while suppressing exaggerated values 

as much as possible. If the piecewise cubic polynomial is , 

then in a two-dimensional coordinate system consisting of  , 

 and  are defined as follows.

    (1)

 

 
(2)

In addition, the slope of  at  can be expressed as 

  ′  , and if      is in the range of 

 ≦  ≦ , the cubic equation  can be expressed as 

follows.

 


 

 


  






 
 



 



(3)

As above, the cubic polynomial  expressed by  and  is 

called a piecewise cubic Hermitian interpolation polynomial. The 

above equation requires 4 interpolation conditions, which are 

represented by 2 function values ​​and 2 derivative values ​​at a 

specific point as follows.

              (4) 

′    ′   

2.3 Prediction of phytoplankton overgrowth potential

2.3.1 Summary

Since there are limitations in quantitative prediction of algal 

organisms, efficiency and accuracy can be maximized by 

simplifying the problem to whether or not algae proliferate. 

Therefore, the response variable becomes a qualitative or 

categorical variable as opposed to a continuous or quantitative 

variable, and in this study, a classification algorithm that predicts 

qualitative variables among machine learning algorithms was used.

In this study, the Artificial Neural Network algorithm was 

adopted, but since there is not much data accumulated so far, we 

focused on the design of the model without distinguishing between 

training data and target data. On the other hand, an artificial neural 

network is an algorithm for machine learning, that is, machine 

learning developed inspired by human nerves. In general, a 

multilayer artificial neural network is divided into three layers: an 

input layer, a hidden layer, and an output layer, and each layer is 

composed of nodes. The input layer is composed of supply 

neurons and serves to input the values ​​of predictor variables for 

deriving a predicted value. If there are n input values, the input 

layer has n nodes. The hidden layer consists of computational 

neurons, receives input values ​​from input nodes, calculates a 

weighted sum, applies this value to a transition function, and 

delivers it to the output layer. When an input signal  is received 

and  is output, it can be expressed as   , where  is a 

weight and  is a bias. In other words, a general artificial neuron 

with n number of input protrusions is expressed as follows.

  
  



  (5)

An artificial neural network uses an activation function as a 

function that converts the sum of input signals into an output 

signal, and in this study, ReLU (Rectified Linear Unit) function, 

which is mainly used recently, was used.

     
  ≦ 

(6)

In this study, the number of hidden layers was set to 20, and 

the weights were initialized to 0 for consistency in prediction.
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2.3.2 Determination of explanatory and response variables

Phytoplankton can proliferate under the influence of physical 

factors such as water temperature and salinity, chemical factors 

such as nutrients and trace elements, and biological factors such as 

symbiosis and predation pressure (Kim et al., 2018). Therefore, 

water temperature, salinity, and nutrients (DIN, DIP) are the most 

basic factors to be considered.

Since insolation affects the photosynthesis of phytoplankton and 

rainfall determines the transport of nutrients in lakes such as 

Saemangeum, these two meteorological factors were included. On 

the other hand, as an important matter to be considered for the 

control of algal bloom, real-time monitoring or equivalent quick 

and simple observation should be possible, so biological factors 

were excluded. Therefore, as explanatory variables, environmental 

factors such as water temperature and salinity, nutrients of DIN 

and PO4-P, and meteorological conditions such as insolation and 

rainfall were determined. In the case of rainfall, the sum of the 

previous 24 hours based on the observation date was used.

The response variable is a categorical type, and the simpler the 

category, the higher the efficiency of the model and the higher the 

prediction accuracy, so it was simplified to Normal and Caution. 

Caution was determined when the current amount of algae was 

1,000 cells/mL or more. The predicted targets are Skeletonema 

spp., Cyclotella atomus, Stephanodiscus, Chaetoceros spp., and

Phormidium tenue.

2.3.3 Performance indicators of the model

As shown in Table 2, when each cell of the confusion matrix is ​

​defined as a, b, c, and d, the definition of each performance 

indicator is as follows.

 


(7)

 











(8)

 


(9)

 


(10)

 


(11)

 


(12)

Predicticted condition

True condition

Positive Negative

Positive a : True positive b : False positive

Negative c : False negative d : True negative

Table 2. Confusion Matrix Structure

Kappa is a statistical metric that measures the agreement 

between actuals and predictions, with a value of 0 indicating 

complete disagreement and a value of 1 indicating perfect 

agreement. The intuitive meaning of the Kappa coefficient is the 

probability that both the actual value and the observed value match 

by chance, and a common interpretation of the Kappa coefficient is 

as shown in Table 3. On the other hand, Balanced accuracy is the 

average of Sensitivity, the percentage of positive predictions, and 

Specificity, the percentage of negative predictions. Also, N.I.R. (No 

Information Rate) is the accuracy when the model predicts only 

negatives, so Accuracy should be higher than N.I.R..

Kappa Interpretation

0.2 > Poor agreement

0.2 ~ 0.4 Fair agreement

0.4 ~ 0.6 Moderate agreement

0.6 ~ 0.8 Good agreement

0.8 ~ 1.0 Excellent agreement

Table 3. Interpretation criteria for general Kappa statistics

2.4 Variable importance

The model first identifies the importance of each explanatory 

variable, and uses a method of continuously calculating the 

probability of algal bloom by linearly increasing or decreasing the 

values ​​of variables with higher importance. The importance of the 

explanatory variable can be identified as the connection strength 

between the input node and the hidden node using the Garson 

algorithm (Garson, 1991). If the input is ‘I’, the output is ‘o’, and 

the relative importance is R, Garson's algorithm is as follows.

 


 

∋


  






 

∋




∙


  






 

∋




∙

(13)
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Here, ni is the number of input nodes, nh is the number of 

hidden nodes, and no is the number of output nodes. wjl is the 

weight between the input node i and the hidden node j, and woj is 

the weight between the hidden node j and the output node o.

Using this, the relative importance of explanatory variables is 

identified, and controllable factors are used. In this model, DIN 

and salinity were used as control factors.

2.5 Initial conditions for species-specific prediction.

Based on the observations, the conditions of the observation day 

when the predicted value was predicted as a caveat among the 

values with a large existing amount were set as initial conditions 

as shown in Table 4, and DIN and salinity were increased and 

decreased according to the direction of increase and decrease (dir.) 

at regular intervals (int.) from minimum (min.) to maximum (max.) 

as shown in Table 5 to predict the possibility of phytoplankton 

bloom.

Skele. Cyclo. Steph. Chaet. Phorm.

Station ML3 ME1 ME1 ML3 DE1

Temp.(℃) 27.666 18.424 8.200 4.057 16.659

Salinity(ppt) 9.839 1.879 10.500 24.110 0.132

DIN(mg/L) 0.634 4.149 10.164 0.626 3.129

PO4(mg/L) 0.033 0.025 0.010 0.004 0.005

Aboundance
(cells/mL)

26,094 14,313 28,800 1,102 8,539

rain_1d
(mm/hr)

5.50 0.00 0.00 2.30 0.00

total_rad
(MJ/m2)

11.16 25.81 14.70 5.44 0.00

P 0.63 1.00 1.00 1.00 1.00

Level caution caution caution caution caution

Table 4. Initial conditions for species-specific prediction

Skele. Cyclo. Steph. Chaet. Phorm.

DIN
(mg/L)

max. 0.634 4.149 10.164 0.626 3.129

min. 0.046 0.082 0.364 0.136 0.042

int. -0.012 -0.083 -0.200 -0.010 -0.063

dir. decrease decrease decrease decrease decrease

Salinity
(ppt)

max. 9.839 6.779 20.300 24.110 9.932

min. 0.039 1.879 10.500 14.310 0.132

int. -0.200 +0.100 +0.200 -0.200 +0.200

dir. decrease increase increase decrease increase

Table 5. Increment and decrement conditions for variables

3. Results and Analysis

3.1 Artificial Neural Network Algorithm Fit Result

Fig. 3 shows the fitting result of this neural network model, 

which consists of 6 input nodes, 20 hidden nodes, and 1 output 

node. Each input node, hidden node, and output node is connected 

to a network with a weight, which is expressed as the connection 

strength. In this study, the ReLU (Rectified Linear Unit) function 

was used as the activation function to convert the sum of input 

signals into output signals.

Meanwhile, Fig. 4 is the confusion matrix showing how well 

the fitted model predicted caution and normal. Table 6 shows the 

performance metrics of the model calculated based on the confusion 

matrix. The balanced accuracy of the fitted model is 0.9014, 

0.8980, 1.0000, 1.0000, and 0.9330 for Skeletonema spp., Cyclotella 

atomus, Stephanodiscus, Chaetoceros spp. and Phormidium tenue, 

respectively. In addition, Kappa values ranged from 0.7889 to 

1.0000, indicating good or excellent agreement.

Skeletonema spp. Cyclotella atomus

Stephanodiscus Chaetoceros spp.

Phormidium tenue

Fig. 3. Artificial Neural Network Fitting Result.
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Skeletonema spp. Cyclotella atomus

Stephanodiscus Chaetoceros spp.

Phormidium tenue

Fig. 4. Confusion matrix of the fitted model.

Indicators Skele. Cyclo. Steph. Chaet. Phorm.

Accuracy 0.9006 0.9151 1.0000 1.0000 0.9738

N.I.R. 0.6369 0.6944 0.9480 0.8959 0.8772

Sensitivity 0.9041 0.8540 1.0000 1.0000 0.8790

Specificity 0.8986 0.9420 1.0000 1.0000 0.9871

Balanced
Accuracy

0.9014 0.8980 1.0000 1.0000 0.9330

Kappa 0.7889 0.7992 1.0000 1.0000 0.8769

Good Good Excellent Excellent Excellent

Table 6. Model's performance metrics

3.2 Importance of explanatory variables

The Garson algorithm was used to determine the importance of 

each explanatory variable. The results are shown in Fig. 5.

3.2.1 Skeletonema spp.

Looking at the initial conditions in Table 4, when Skeletonema 

spp. The importance of variables was in the order of PO4 > 

Salinity > DIN > Solar Radiation > Water Temperature > Rainfall. 

On the other hand, as shown in Table 1, when all species 

proliferated in large quantities, PO4-P was at a very low level, so 

controlling it is meaningless. Therefore, the mass growth 

probability according to DIN and salt concentration was calculated.

On the other hand, according to the study of Park et al. (2023), 

the mass growth of Skeletonema spp. is suppressed when there is 

no influx of salt, and it can be interpreted as mass growth when 

salt is introduced, so it was changed in the direction of reducing 

salinity.

3.2.2 Cyclotella atomus

When Cyclotella atomus proliferated in large quantities, the 

salinity was about 1.879 ppt, which was close to that of fresh 

water, and DIN was 4.149 mg/L and PO4-P was 0.025 mg/L. The 

importance of variables appeared in the order of PO4 > DIN > 

Salinity > Water Temperature > Insolation > Rainfall. Salinity was 

changed in the direction of increasing, and since DIN is very high, 

it is considered that the effect of inhibiting the growth of 

phytoplankton can be increased by limiting the inflow.

3.2.3 Stephanodiscus

At the time of the Stephanodiscus bloom, salinity was around 

10.5000 ppt, brackish water conditions, DIN was 10.1640 mg/L, 

and PO4-P was 0.0100 mg/L. The order of importance of the 

variables was Water Temperature > DIN > Salinity > Insolation > 

PO4 > Rainfall. The salinity was changed in the direction of 

increasing, and since the concentration of DIN is very high, it is 

judged that the effect of inhibiting the proliferation of 

phytoplankton can be improved by limiting it.

3.2.4 Cheatoceros spp.

At the time Cheatoceros spp. proliferated in large quantities, 

salinity was about 24.110 ppt in brackish water conditions, DIN 

was 0.626 mg/L, and PO4-P was 0.004 mg/L. The importance of 

variables was in the order of DIN > Water Temperature > Rainfall 

> Salinity > Solar Radiation > PO4. Salinity was changed in a 

decreasing direction.

3.2.5 Phormidium tenue

At the time of the Phormidium tenue bloom, salinity was about 

0.1319 ppt, which is freshwater conditions, DIN was 3.1288 mg/L, 

and PO4-P was 0.0050 mg/L. The order of importance of the 

variables was PO4 > DIN > Salinity > Water Temperature > 
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Insolation > Rainfall. Salinity is increased by opening the gate, and 

DIN is very high, so restricting the inflow will inhibit phytoplankton 

growth.

Skeletonema spp. Cyclotella atomus

Stephanodiscus Chaetoceross spp.

Phormidium tenue

Fig. 5. Importance of each input node in artificial neural 

network model.

3.3 Algal bloom control model prediction result

For each species, we quantitatively predicted the level of salinity 

and DIN that should be maintained to inhibit phytoplankton blooms 

under randomized conditions where blooms occurred (Fig. 6). PO4 

was excluded from the calculation because it is present at too low a 

level (less than 0.1 mg/L), even though it is important, while nutrients 

were calculated as the probability of increasing or decreasing DIN. 

3.3.1 Skeletonema spp.

For Skeletonema spp. the probability of mass proliferation 

decreased from about 63.3% to dir 49.9% when DIN was lowered 

from 0.634 mg/L to 0.130 mg/L. Mass proliferation was predicted 

to be inhibited when salinity was between 6.039 and 8.439 ppt and 

below 1.839 ppt.

3.3.2 Cyclotella atomus

For Cyclotella atomus, lowering DIN from 4.149 mg/L to 0.165 

mg/L reduced the probability of mass proliferation from about 

100.0% to 7.8%. Mass proliferation was predicted to be inhibited 

at salinities above about 4.379 ppt.

3.3.3 Stephanodiscus

For Stephanodiscus, lowering DIN from 10.164 mg/L to 8.364 

mg/L reduced the probability of mass proliferation from about 

100.0% to 50.0%. Mass growth was predicted to be inhibited at 

salinities above about 19.5 ppt.

3.3.4 Chaetoceros spp.

For Chaetoceros spp. the probability of mass proliferation 

decreased from about 99.9% to 40.2% when DIN was lowered 

from 0.626 mg/L to 0.296 mg/L. Mass proliferation was predicted 

to be inhibited at salinities below about 22.310 ppt.

3.3.5 Phormidium tenue

For Phormidium teunue, lowering DIN from 3.129 mg/L to 

0.420 mg/L reduced the probability of mass growth from 

approximately 100.0% to 0.0%. Mass proliferation was predicted to 

be inhibited at salinities above about 2.932 ppt.

Skeletonema spp. (DIN) Skeletonema spp. (DIN)

Cyclotella atomus (Salinity) Cyclotella atomus (DIN)

Stephanodiscus (Salinity) Stephanodiscus (DIN)
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Cheatoceross spp. (Salinity) Cheatoceross spp. (DIN)

Phormidium tenue (Salinity) Phormidium tenue (DIN)

Fig. 6. Probability of phytoplankton blooms as a function of 

salinity and nutrient concentration.

4. Conclusion

Using an artificial neural network algorithm, we were able to 

predict the probability of blooms according to phytoplankton 

species, and predict the quantitative amount of DIN and salinity to 

suppress blooms, so we were able to prepare efficient and effective 

countermeasures to control phytoplankton blooms. However, the 

reliability of the model was not sufficient with only one year of 

observations, and it will be possible to build a more sophisticated 

model if additional data can be accumulated in the future. The 

phytoplankton bloom control model is expected to contribute to the 

prediction and warning of phytoplankton blooms in large artificial 

lakes such as Saemangeum, and to efficiently suppress them.
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