• Title/Summary/Keyword: Algal abundance

Search Result 85, Processing Time 0.021 seconds

Spatio-temporal Characteristics of Cyanobacterial Communities in the Middle-downstream of Nakdong River and Lake Dukdong (낙동강 중, 하류 및 덕동호의 시·공간적 남조류 군집 특성)

  • Park, Hae-Kyung;Shin, Ra-Young;Lee, Haejin;Lee, Kyung-Lak;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.286-294
    • /
    • 2015
  • Temporal and spatial characteristics of cyanobacterial communities at the monitoring stations for Harmful Algal Bloom Alert System (HABAS) in Nakdong River and Lake Dukdong were investigated for two years (2013 to 2014). A total of 30 cyanobacterial species from 14 genera were found at the survey stations. Microcystis sp. showed maximum cell density in the total cyanobacterial community in August, 2014 at ND-2 and in September, 2013 at ND-3 station. Lynbya limnetica and Geitlerinema sp., non-target species for alert criteria showed maximum cell density at ND-1 (August, 2013) and Dam station of Lake Dukdong (September, 2014), respectively. Total cyanobacterial cell density and the relative abundance of four target genera (Microcystis, Anabaena, Aphanizomenon and Oscillatoria spp.) for alert criteria was relatively lower in the mesotrophic Lake Dukdong than at the eutrophic riverine stations of Nakdong River, indicating cyanobacterial density and the RA of target genera is affected by the trophic state of the monitoring stations. Simulating the alert system using phycocyanin concentration as an alert criterion resulted in the longer period of alert issued compared to the period of alert issued using the current criterion of harmful cyanobacterial cell density due to the influence of phycocyanin concentration from non-target cyanobacterial species.

Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations

  • Jang, Se Hyeon;Jeong, Hae Jin
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.45-59
    • /
    • 2020
  • To investigate the spatio-temporal distributions of the mixotrophic dinoflagellate Yihiella yeosuensis in Korean coastal waters and its grazing impact on prey populations, water samples were seasonally collected from 28 stations in the East, West, and South Seas of Korea and Jeju Island from April 2015 to October 2018. The abundances of Y. yeosuensis in the water samples were quantified using quantitative real-time polymerase chain reaction (qPCR). Simultaneously, the physical and chemical properties of water from all sampled stations were determined, and the abundances of the optimal prey species of Y. yeosuensis, the prasinophyte Pyramimonas sp. and the cryptophyte Teleaulax amphioxeia, were quantified using qPCR. Y. yeosuensis has a wide distribution, as is reflected by the detection of Y. yeosuensis cells at 23 sampling stations; however, this distribution has a strong seasonality, which is indicated by its detection at 22 stations in summer but only one station in winter. The abundance of Y. yeosuensis was significantly and positively correlated with those of Pyramimonas sp. and T. amphioxeia, as well as with water temperature. The highest abundance of Y. yeosuensis was 48.5 cells mL-1 in Buan in July 2017, when the abundances of Pyramimonas sp. and T. amphioxeia were 917.6 and 210.4 cells mL-1, respectively. The growth rate of Y. yeosuensis on Pyramimonas sp., calculated by interpolating the growth rates at the same abundance, was 0.49 d-1, which is 37% of the maximum growth rate of Y. yeosuensis on Pyramimonas sp. obtained in the laboratory. Therefore, the field abundance of Pyramimonas sp. obtained in the present study can support a moderate positive growth of Y. yeosuensis. The maximum grazing coefficient for Y. yeosuensis on the co-occurring Pyramimonas sp. was 0.42 d-1, indicating that 35% of the Pyramimonas sp. population were consumed in 1 d. Therefore, the spatio-temporal distribution of Y. yeosuensis in Korean coastal waters may be affected by those of the optimal prey species and water temperature. Moreover, Y. yeosuensis may potentially have considerable grazing impacts on populations of Pyramimonas sp.

Estimation of bioluminescence intensity of the dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum populations in Korean waters using cell abundance and water temperature

  • Sang Ah Park;Hae Jin Jeong;Jin Hee Ok;Hee Chang Kang;Ji Hyun You;Se Hee Eom;Yeong Du Yoo;Moo Joon Lee
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25℃. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15℃ but decreased at temperatures exceeding this (to 30℃). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20℃ but decreased between 20 and 30℃. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998-2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.

Quantitative detection of Pythium porphyrae and Pythium chondricola (Oomycota), the causative agents of red rot disease in Pyropia farms in China

  • Jie Liu;Sudong Xia;Huichao Yang;Zhaolan Mo;Jie Li;Yongwei Yan
    • ALGAE
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2024
  • Red rot disease is one of the notorious algal diseases that threaten the cultivation of Pyropia in China, and two Pythium pathogens, i.e., Pythium porphyrae and P. chondricola, have been reported as causative agents. To monitor the pathogens, a fluorescent quantitative polymerase chain reaction (PCR) method was developed to quantitatively detect their abundance. Using overlapping PCR and pathogen-specific primer pairs, two pathogen-specific fragments were concatenated to construct an internal standard plasmid, which was used for quantification. For zoospores of known numbers, the results showed that this method can detect as less as 100 and 10 zoospores mL-1 in a 200 mL solution for P. porphyrae and P. chondricola, respectively. Using monthly collected seawater at 10 sites in Haizhou Bay, a typical aquaculture farm in China, a significantly higher temperature and a significantly lower salinity were determined in December 2021. P. porphyrae was determined to be more abundant than P. chondricola, though with similar temporal distribution patterns from December 2021 to February 2022. When a red rot disease occurred in December 2021, the two pathogens were significantly more abundant at two infected sub-sites than the uninfected sub-site within both seawater and sediment, though they were all significantly more enriched in sediment than in seawater. The present method provides the capability to quantify and compare the abundance of two pathogens and also has the potential to forecast the occurrence of red rot disease, which is of much significance in managing and controlling the disease.

Influences of Thermal Effluents on the Epilithic Algal Community in Small Stream Originating from the Seokjung Hot Spring (온천 배수 유입에 따른 소형 하천의 생태계 변화와 회복에 관한 연구 -소형 하천에서 온천 배수가 부착조류 군집에 미치는 영향)

  • 정연태;문연자;김미연;최민규;길봉섭
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.345-358
    • /
    • 1999
  • To study the influences of thermal effluents flowing from hot spring on epilithic algal community, seasonal survey was carried out at stream and its watersheds from Seokjeong hot spring in Chollabuk-Do, Korea. Totally 7 points were divided into three regions fur sampling of water and epilithic algae, such as the direct effected, uneffected and the mixed region, respectively. At the discharging points of effluents, a dark-green cyanobacterial mat were remarkably constructed, mainly by two cyanobacteria, Oscillatoria and Phormidium. The mat formation were more obvious at low temperature than any other season, and even result in disappear with downstream and season. Totally, one hundred and fifty-three taxa of epilithic algae were classified with 15 unidentified species. Among the, diatoms occupied 58% of total species, whereas cyanobacteria was 67% of total biomass, comparatively. In terms of stream direction, relative abundance of cyanobacteria was only limited in the upstream in cold season, and result in this pattern disappeared with season change. Although all physicochemical variables at the discharging points, was very high, compare to other points, they were quickly decreased downstream. Among them, some heavy metals were not detected or below the detection levels at downstream. Nitrate nitrogen increased with downstream, as well as phosphorus and sulfate have a similar trend throughout, while ammonia quickly decreased in the initial period of discharging effluents. This suggest that although the thermal effluent with high temperature and organic compounds could polluted the small study stream, various contributions such as flowing water, intake of uneffected streawater and collaboration of cyanobacterial mat and stream bottom gradually induces a stable water system.

  • PDF

Chlrorophylls and their Degradation Products using High Performance Liquid Chromatography (HPLC), with Data from Suspended and Sinking Particulate Matter in Prydz Bay, Antarctica

  • Noh, Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.4
    • /
    • pp.323-334
    • /
    • 2011
  • Suspended and sinking particles were collected in austral summer during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of chlorophylls and their degradation products both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Chlorophylls a and c were the dominant algal pigments both in suspended and sinking particles. Because of the abundance of fecal pellets at Site 740, the mean fluxes at 200 m averaged 6 fold greater than that at 50 m. This implies that a dense swarm of zooplankters, presumably large copepods and/or salps, may "feed and excrete" mainly in between 100-200 m depths at this site, closest to land in Prydz Bay. Interestingly, The flux of phaeophorbide a was generally similar in magnitude to that of chlorophyll a throughout the study areas. This is an evidence that materials escaping from near-surface regions in austral summer derive mainly from the gazing of zooplankters. "New production" from sediment-trapped CHL pigment fluxes in Prydz Bay was estimated using f-ratio of 0.15, ranging from 520 to $1,605\;{\mu}gC\;m^{-2}\;day^{-1}$.

Seasonal Community Structure and Vertical Distribution of Medicinal Seaweeds at Kkotji in Taean Peninsula, Korea (태안반도 꽃지 약용해조의 계절적 군집구조 및 수직분포)

  • Lee, Ki-Hun;Yoo, Hyun-Il;Choi, Han-Gil
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.209-219
    • /
    • 2007
  • Marine algal flora and community structure of medicinal seaweeds were examined at Kkotji of Taean Peninsula, Korea from May 2005 to January 2006. Seventy-nine seaweeds including 42 medicinal algae and one marine plant were identified. Sargassum thunbergii was the representative alga occurred at all seasons and shore levels. The dominant medicinal seaweeds were perennial S. thunbergii, Neorhodomela aculeata, and Corallina pilulifera, and ephemeral Monostroma grevillei, Porphyra yezoensis, and Ulva pertusa. Their vertical distribution were N. aculeata – P. yezoensis, M. grevillei, and U. pertusa – C. pilulifera from high to low intertidal zone. The average biomass of medicinal seaweeds varied from 34.17 g m–2 in spring to 56.41 g m–2 in summer. At Kkotji shore, the opportunistic species (Enteromorpha, Ulva, and Cladophora) and turf-forming algae (Caulacanthus okamurae and Gelidium divaricatum) were easily observed. Such fast growing ESG II (ecological state group) was 87.50% and slow growing perennial algae, ESG I was only 12.15%. Also, diversity index (H’) and dominance index (DI) indicate that the seaweed community of Kkotji is unstable. Therefore, Kkotji rocky shore should be more protected from human activities such as turbulence and eutrophication in order to maintain species diversity and abundance of medicinal seaweeds.

Spatio-temporal Distribution of Dinoflagellate Resting Cysts at the Saemangeum Area (새만금 해역에서 와편모조류 휴면포자의 시공간적 분포)

  • PARK Gi-Hong;KIM Keun-Yong;KIM Chang-Hoon;KIM Hak Gyoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.202-208
    • /
    • 2004
  • The spatio-temporal distribution of dinoflagellate resting cysts was investigated by palynological processing to understand the harmful algal bloom (HAB) potential in the sediment of the Saemangeun area in 2003. In total, thirty-two dinoflagellate species were identified, and their concentrations were in the range of $6-1,618\;cysts{\cdot}g^{-1}$ (dry weight). The concentrations of resting cysts were higher in the spring (26 species, $64-1,101\;cysts{\cdot}g^{-1})$ and summer (30 species, $81-1,618\;cysts{\cdot}g^{-1})$ than in the autumn (32 species, $6-1,150\;cysts{\cdot}g^{-1})$ and winter (24 species, $25-728\;cysts{\cdot}g^{-1}).$ The composition rate of the heterotrophic dinoflagellate species to the total, which is closely related to the eutrophication process, to ranged from 6 to $29\%$ in the study area. The most dominant species was toxic Alexandrium tamarense/catenella $(25\%)$ followed by Gonyaulax scrippsea $(9\%)$ and toxic Protoceratium reticulatum $(5\%).$ Given the high abundance of the toxigenic dinoflagellate species, the Saemangeun area is considered to have the great potential for HABs in the future.

Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing

  • Boopathi, Thangavelu;Wang, Hui;Lee, Man-Duck;Ki, Jang-Seu
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.424-437
    • /
    • 2018
  • The incidence of freshwater algal bloom has been increasing globally in recent years and poses a major threat to environmental health. Cyanobacteria are the major component of the bloom forming community that must be monitored frequently. Their morphological identities, however, have remained elusive, due to their small size in cells and morphological resemblances among species. We have analyzed molecular diversity and seasonal changes of cyanobacteria in Paldang Reservoir, Korea, using morphological and 16S rRNA pyrosequencing methods. Samples were collected at monthly intervals from the reservoir March-December 2012. In total, 40 phylotypes of cyanobacteria were identified after comparing 49,131 pyrosequence reads. Cyanobacterial genera such as Anabaena, Aphanizomenon, Microcystis and Synechocystis were predominantly present in samples. However, the majority of cyanobacterial sequences (65.9%) identified in this study were of uncultured origins, not detected morphologically. Relative abundance of cyanobacterial sequences was observed as high in August, with no occurrence in March and December. These results suggested that pyrosequencing approach may reveal cyanobacterial diversity undetected morphologically, and may be used as reference for studying and monitoring cyanobacterial communities in aquatic environments.

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.