DOI QR코드

DOI QR Code

Estimation of bioluminescence intensity of the dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum populations in Korean waters using cell abundance and water temperature

  • Sang Ah Park (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hae Jin Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jin Hee Ok (Department of Marine Sciences and Convergent Engineering, College of Marine Sciences and Convergence Engineering, Hanyang University ERICA) ;
  • Hee Chang Kang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ji Hyun You (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Se Hee Eom (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Yeong Du Yoo (Department of Oceanography, College of Ocean Sciences, Kunsan National University) ;
  • Moo Joon Lee (Department of Marine Biotechnology, Anyang University)
  • 투고 : 2024.01.25
  • 심사 : 2024.03.10
  • 발행 : 2024.03.21

초록

Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25℃. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15℃ but decreased at temperatures exceeding this (to 30℃). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20℃ but decreased between 20 and 30℃. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998-2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.

키워드

과제정보

This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2021M3I6A1091272; 2021R1A2C1093379; RS-2023-00291696) award to HJJ.

참고문헌

  1. Aguilera-Belmonte, A., Inostroza, I., Franco, J. M., Riobo, P. & Gomez, P. I. 2011. The growth, toxicity and genetic characterization of seven strains of Alexandrium catenella (Whedon and Kofoid) Balech 1985 (Dinophyceae) isolated during the 2009 summer outbreak in southern Chile. Harmful Algae 12:105-112. doi.org/10.1016/j.hal.2011.09.006 
  2. Batchelder, H. P. & Swift, E. 1989. Estimated near-surface mesoplanktonic bioluminescence in the western North Atlantic during July 1986. Limnol. Oceanogr. 34:113-128. doi.org/10.4319/lo.1989.34.1.0113 
  3. Batchelder, H. P., Swift, E. & Van Keuren, J. R. 1992. Diel patterns of planktonic bioluminescence in the northern Sargasso Sea. Mar. Biol. 113:329-339. doi.org/10.1007/BF00347288 
  4. Biggley, W. H., Swift, E., Buchanan, R. J. & Seliger, H. H. 1969. Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahumensis, Gonyaulax polyedra, and Pyrocystis lunula. J. Gen. Physiol. 54:96-122. doi.org/10.1085/jgp.54.1.96 
  5. Burkenroad, M. D. 1943. A possible function of bioluminescence. J. Mar. Res. 5:161-164.
  6. Buskey, E. J. 1992. Epipelagic planktonic bioluminescence in the marginal ice zone of the Greenland Sea. Mar. Biol. 113:689-698. doi.org/10.1007/BF00349712 
  7. Buskey, E. J. 1995. Growth and bioluminescence of Noctiluca scintillans on varying algal diets. J. Plankton Res. 17:29-40. doi.org/10.1093/plankt/17.1.29 
  8. Buskey, E. J., Coulter, C. J. & Brown, S. L. 1994. Feeding, growth and bioluminescence of the heterotrophic dinoflagellate Protoperidinium huberi. Mar. Biol. 121:373-380. doi.org/10.1007/bf00346747 
  9. Buskey, E. J., Strom, S. & Coulter, C. 1992. Bioluminescence of heterotrophic dinoflagellates from Texas coastal waters. J. Exp. Mar. Biol. Ecol. 159:37-49. doi.org/10.1016/0022-0981(92)90256-a 
  10. Chen, S., Gan, S., Hu, L., Bi, R. & Gao, Y. 2023. Effects of typical marine environmental factors on the bioluminescence intensity of individual Noctiluca scintillans. Opt. Express 31:12114-12127. doi.org/10.1364/OE.485445 
  11. Craig, J. M., Klerks, P. L., Heimann, K. & Waits, J. L. 2003. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint. Environ. Pollut. 125:267-275. doi.org/10.1016/s0269-7491(03)00059-9 
  12. Cusick, K. D. & Widder, E. A. 2014. Intensity differences in bioluminescent dinoflagellates impact foraging efficiency in a nocturnal predator. Bull. Mar. Sci. 90:797-811. doi.org/10.5343/bms.2013.1059 
  13. Cusick, K. D. & Widder, E. A. 2020. Bioluminescence and toxicity as driving factors in harmful algal blooms: ecological functions and genetic variability. Harmful Algae 98:101850. doi.org/10.1016/j.hal.2020.101850 
  14. Detoni, A. M. S., Navarro, G., Garrido, J. L., Rodriguez, F., Hernandez-Urcera, J. & Caballero, I. 2023. Mapping dinoflagellate blooms (Noctiluca and Alexandrium) in aquaculture production areas in the NW Iberian Peninsula with the Sentinel-2/3 satellites. Sci. Total Environ. 868:161579. doi.org/10.1016/j.scitotenv.2023.161579 
  15. Elbrachter, M. & Qi, Y. Z. 1998. Aspects of Noctiluca (Dinophyceae) population dynamics. In Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. (Eds.) Physiological Ecology of Harmful Algal Blooms. NATO ASI Series. Ecological Sciences, Vol. 14. Springer-Berlag, Berlin, pp. 315-335. 
  16. Eom, S. H., Jeong, H. J., Ok, J. H., et al. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36. doi.org/10.4490/algae.2021.36.2.22 
  17. Esaias, W. E. & Curl, H. C. Jr. 1972. Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnol. Oceanogr. 17:901-906. doi.org/10.4319/lo.1972.17.6.0901 
  18. Games, P. A. & Howell, J. F. 1976. Pairwise multiple comparison procedures with unequal N's and/or variances: a Monte Carlo study. J. Educ. Behav. Stat. 1:113-125. doi.org/10.3102/10769986001002113 
  19. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. doi.org/10.1139/m62-029 
  20. Haddock, S. H. D., Moline, M. A. & Case, J. F. 2010. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2:443-493. doi.org/10.1146/annurev-marine-120308-081028 
  21. Harrison, P. J., Furuya, K., Glibert, P. M., et al. 2011. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29:807-831. doi.org/10.1007/s00343-011-0510-z 
  22. Hinder, S. L., Hays, G. C., Edwards, M., Roberts, E. C., Walne, A. W. & Gravenor, M. B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2:271-275. doi.org/10.1038/nclimate1388 
  23. Jeong, H. J., Kang, H. C., Lim, A. S., et al. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. doi.org/10.1126/sciadv.abe4214 
  24. Jeong, H. J., Kim, S. K., Kim, J. S., Kim, S. T., Yoo, Y. D. & Yoon, J. Y. 2001. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 48:298-308. doi.org/10.1111/j.1550-7408.2001.tb00318.x 
  25. Jeong, H. J., Kim, T. H., Yoo, Y. D., et al. 2011. Grazing impact of heterotrophic dinoflagellates and ciliates on common red-tide euglenophyte Eutreptiella gymnastica in Masan Bay, Korea. Harmful Algae 10:576-588. doi.org/10.1016/j.hal.2011.04.008 
  26. Jeong, H. J., Park, K. H., Kim, J. S., et al. 2003. Reduction in the toxicity of the dinoflagellate Gymnodinium catena-tum when fed on by the heterotrophic dinoflagellate Polykrikos kofoidii. Aquat. Microb. Ecol. 31:307-312. doi.org/10.3354/ame031307 
  27. Jess, M. M. 1985. The comparative effect of temperature on mechanically stimulated flash responses of three bioluminescent dinoflagellates, Pyrocystis fusiformis, Pyrocystis noctiluca and Noctiluca miliaris. Ph.D. dissertation, University of California, Santa Babara, CA, USA. 
  28. John, U., Fensome, R. A. & Medlin, L. K. 2003. The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense "species complex" (Dinophyceae). Mol. Biol. Evol. 20:1015-1027. doi.org/10.1093/molbev/msg105 
  29. Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117. doi.org/10.1016/j.hal.2018.08.005 
  30. Kang, H. C., Jeong, H. J., Ok, J. H., et al. 2023. Food web structure for high carbon retention in marine plankton communities. Sci. Adv. 9:eadk0842. doi.org/10.1126/sciadv.adk0842 
  31. Kelly, M. G. 1968. The occurrence of dinoflagellate luminescence at Woods Hole. Biol. Bull. 135:279-295. 
  32. Kim, S. J., Jeong, H. J., Kang, H. C., You, J. H. & Ok, J. H. 2019. Differential feeding by common heterotrophic protists on four Scrippsiella species of similar size. J. Phycol. 55:868-881. doi.org/10.1111/jpy.12864 
  33. Krasnow, R., Dunlap, J. C., Taylor, W., Hastings, J. W., Vetter-ling, W. & Gooch, V. 1980. Circadian spontaneous bioluminescent glow and flashing of Gonyau1ax polyedra. J. Comp. Phvsiol. 138:19-26. doi.org/10.1007/bf00688730 
  34. Kruskal, W. H. & Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47:583-621. doi.org/10.1080/01621459.1952.10483441 
  35. Lapota, D., Galt, C., Losee, J. R., Huddell, H. D., Orzech, J. K. & Nealson, K. H. 1988. Observations and measurements of planktonic bioluminescence in and around a milky sea. J. Exp. Mar. Biol. Ecol. 119:55-81. doi.org/10.1016/0022-0981(88)90152-9 
  36. Lapota, D. & Losee, J. R. 1984. Observations of bioluminescence in marine plankton from the Sea of Cortez. J. Exp. Mar. Biol. Ecol. 77:209-239. doi.org/10.1016/0022-0981(84)90121-7 
  37. Latz, M. I., Bovard, M., VanDelinder, V., Segre, E., Rohr, J. & Groisman, A. 2008. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J. Exp. Biol. 211:2865-2875. doi.org/10.1242/jeb.011890 
  38. Latz, M. I. & Jeong, H. J. 1996. Effect of red tide dinoflagellate diet and cannibalism on the bioluminescence of the heterotrophic dinoflagellates Protoperidinium spp. Mar. Ecol. Prog. Ser. 132:275-285. doi.org/10.3354/meps132275 
  39. Latz, M. I., Juhl, A. R., Ahmed, A. M., Elghobashi, S. E. & Rohr, J. 2004. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J. Exp. Biol. 207:1941-1951. doi.org/10.1242/jeb.00973 
  40. Laza-Martinez, A. 2017. Identification of several strains of the potentially toxic genus Alexandrium from the Bilbao estuary. Ph.D. dissertation, University of Bologna, Emilia-Romagna, Italy, 87 pp. 
  41. Le Tortorec, A. H., Hakanen, P., Kremp, A., Olsson, J., Suikkanen, S. & Simis, S. G. H. 2014. Stimulated bioluminescence as an early indicator of bloom development of the toxic dinoflagellate Alexandrium ostenfeldii. J. Plankton Res. 36:412-423. doi.org/10.1093/plankt/fbt116 
  42. Li, Y., Swift, E. & Buskey, E. J. 1996. Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (Pyrrophyta). J. Phycol. 32:974-982. doi.org/10.1111/j.0022-3646.1996.00974.x 
  43. Lim, A. S., Jeong, H. J., Seong, K. A., et al. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides in South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222. doi.org/10.4490/algae.2017.32.8.25 
  44. Lindstrom, J., Grebner, W., Rigby, K. & Selander, E. 2017. Effects of predator lipids on dinoflagellate defence mechanisms: increased bioluminescence capacity. Sci. Rep. 7:13104. doi.org/10.1038/s41598-017-13293-4 
  45. Lotliker, A. A., Baliarsingh, S. K., Trainer, V. L., et al. 2018. Characterization of oceanic Noctiluca blooms not associated with hypoxia in the Northeastern Arabian Sea. Harmful Algae 74:46-57. doi.org/10.1016/j.hal.2018.03.008 
  46. Lynch, R. V. 1981. Analysis of fleet reports of bioluminescence in the Indian Ocean. U.S. Naval Research Laboratory, Washington, DC, 9 pp. 
  47. Maldonado, E. M. & Latz, M. I. 2007. Shear-stress dependence of dinoflagellate bioluminescence. Biol. Bull. 212:242-249. doi.org/10.2307/25066606 
  48. Mann, H. B. & Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18:50-60. doi.org/10.1214/aoms/1177730491 
  49. Marcinko, C. L. J., Painter, S. C., Martin, A. P. & Allen, J. T. 2013. A review of the measurement and modelling of dinoflagellate bioluminescence. Prog. Oceanogr. 109:117-129. doi.org/10.1016/j.pocean.2012.10.008 
  50. Martinez, A., Mendez, S. & Fabre, A. 2016. First record of bioluminescence of Alexandrium fraterculus (dinoflagellate), in the Uruguayan coast, South Western Atlantic Ocean. Pan-Am. J. Aquat. Sci. 11:356-360. 
  51. Matsuoka, K., Cho, H.-J. & Jacobson, D. M. 2000. Observations of the feeding behavior and growth rates of the heterotrophic dinoflagellate Polykrikos kofoidii (Polykrikaceae, Dinophyceae). Phycologia 39:82-86. doi.org/10.2216/i0031-8884-39-1-82.1 
  52. Mohamed, Z. A. & Mesaad, I. 2007. First report on Noctiluca scintillans blooms in the Red Sea off the coasts of Saudi Arabia: consequences of eutrophication. Oceanologia 49:337-351. 
  53. Morin, J. G. 1983. Coastal bioluminescence: patterns and functions. Bull. Mar. Sci. 33:787-817. 
  54. National Institute of Fisheries Science, Korea. 2024. Forecast, breaking news. Available from: https://www.nifs.go.kr/red/news_1.red. Accessed Feb 13, 2024. 
  55. Ocean Biodiversity Information System. 2024. Intergovernmental Oceanographic Commission of UNESCO. Available from: http://www.obis.org. Accessed Feb 13, 2024. 
  56. Padmakumar, K. B., SreeRenjima, G., Fanimol, C. L., Menon, N. R. & Sanjeevan, V. N. 2010. Preponderance of heterotrophic Noctiluca scintillans during a multi-species diatom bloom along the southwest coast of India. Int. J. Oceans Oceanogr. 4:55-63. 
  57. Park, S. A., Jeong, H. J., Ok, J. H., et al. 2021. Bioluminescence capability and intensity in the dinoflagellate Alexandrium species. Algae 36:299-314. doi.org/10.4490/algae.2021.36.12.6 
  58. Real-time Information System for Aquaculture, National Institute of Fisheries Science. 2024. Available from: https://www.nifs.go.kr/risa/main.risa. Accessed Feb 13, 2024. 
  59. Rohr, J., Latz, M. I., Fallon, S., Nauen, J. C. & Hendricks, E. 1998. Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J. Exp. Biol. 201:1447-1460. doi.org/10.1242/jeb.201.9.1447 
  60. Seliger, H. H., Carpenter, J. H., Loftus, M. & McElroy, W. D. 1970. Mechanisms for the accumulation of high concentrations of dinoflagellates in a bioluminescent bay. Limnol. Oceanogr. 15:234-245. doi.org/10.4319/lo.1970.15.2.0234 
  61. Sweeney, B. M. 1963. Bioluminescent dinoflagellates. Biol. Bull. 125:177-181. doi.org/10.2307/1539300 
  62. Sweeney, B. M. 1981. Variations of the bioluminescence per cell in Dinoflagellates. In Nealson, K. H. (Ed.) Bioluminescence Current Perspectives. Burgess Publishing, Minneapolis, MN, pp. 90-94. 
  63. Swift, E. & Meunier, V. 1976. Effects of light intensity on division rate, stimulable bioluminescence and cell size of the oceanic dinoflagellates Dissodinium lunula, Pyrocystis fusiformis and P. noctiluca. J. Phycol. 12:14-22. doi.org/10.1111/j.1529-8817.1976.tb02819.x 
  64. Swift, E., Sullivan, J. M., Batchelder, H. P., Van Keuren, J., Vaillancourt, R. D. & Bidigare, R. R. 1995. Bioluminescent organisms and bioluminescence measurements in the North Atlantic Ocean near latitude 59.5°N, longitude 21°W. J. Geophys. Res. Oceans 100:6527-6547. doi.org/10.1029/94JC01870 
  65. Temnykh, A. V., Silakov, M. I. & Melnik, A. V. 2022. Large luminous plankton in bioluminescence peaks in the Black Sea. Russ. J. Mar. Biol. 48:247-255. doi.org/10.1134/s1063074022040113 
  66. Tett, P. B. 1971. The relation between dinoflagellates and the bioluminescence of sea water. J. Mar. Biol. Assoc. U. K. 51:183-206. doi.org/10.1017/S002531540000655X 
  67. Tillmann, U. 2004. Interactions between planktonic microalgae and protozoan grazers. J. Eukaryot. Microbiol. 51:156-168. doi.org/10.1111/j.1550-7408.2004.tb00540.x 
  68. Tiselius, P. & Kiorboe, T. 1998. Colonization of diatom aggregates by the dinoflagellate Noctiluca scintillans. Limnol. Oceanogr. 43:154-159. doi.org/10.4319/lo.1998.43.1.0154 
  69. Valiadi, M., de Rond, T., Amorim, A., et al. 2019. Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the U.S.A. Limnol. Oceanogr. 64:2709-2724. doi.org/10.1002/lno.11309 
  70. Valiadi, M. & Iglesias-Rodriguez, D. 2013. Understanding bioluminescence in dinoflagellates: how far have we come?. Microorganisms 1:3-25. doi.org/10.3390/microorganisms1010003 
  71. von Dassow, P. & Latz, M. I. 2002. The role of Ca2+ in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. J. Exp. Biol. 205:2971-2986. doi.org/10.1242/jeb.205.19.2971 
  72. Welch, B. L. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35. doi.org/10.2307/2332510 
  73. Widder, E. A. 2010. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704-708. doi.org/10.1126/science.1174269 
  74. Wilson, T. & Hastings, J. W. 2013. Bioluminescence: living lights, lights for living. Harvard University Press, Cambridge, MA, 185 pp. 
  75. Xue, C., Chen, S. & Zhang, T. 2020. Optical proxy for the abundance of red Noctiluca scintillans from bioluminescence flash kinetics in the Yellow Sea and Bohai Sea. Opt. Express 28:25618-25632. doi.org/10.1364/OE.400257 
  76. Yoo, Y. D., Jeong, H. J., Kim, J. S., et al. 2013. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101. doi.org/10.1016/j.hal.2013.10.009 
  77. Yoo, Y. D., Jeong, H. J., Shim, J. H., et al. 2002. Outbreak of red tides in the coastal waters off the southern Saemankeum areas, Jeonbuk, Korea. I. Temporal and spatial variations in the phytoplankton community in the summer-fall of 1999. The Sea 7:129-139. 
  78. You, J. H., Jeong, H. J., Park, S. A., et al. 2022. Development of an automatic system for cultivating the bioluminescent heterotrophic dinoflagellate Noctiluca scintillans on a 100-liter scale. Algae 37:149-161. doi.org/10.4490/algae.2022.37.6.8