Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.2.24

Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations  

Jang, Se Hyeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Publication Information
ALGAE / v.35, no.1, 2020 , pp. 45-59 More about this Journal
Abstract
To investigate the spatio-temporal distributions of the mixotrophic dinoflagellate Yihiella yeosuensis in Korean coastal waters and its grazing impact on prey populations, water samples were seasonally collected from 28 stations in the East, West, and South Seas of Korea and Jeju Island from April 2015 to October 2018. The abundances of Y. yeosuensis in the water samples were quantified using quantitative real-time polymerase chain reaction (qPCR). Simultaneously, the physical and chemical properties of water from all sampled stations were determined, and the abundances of the optimal prey species of Y. yeosuensis, the prasinophyte Pyramimonas sp. and the cryptophyte Teleaulax amphioxeia, were quantified using qPCR. Y. yeosuensis has a wide distribution, as is reflected by the detection of Y. yeosuensis cells at 23 sampling stations; however, this distribution has a strong seasonality, which is indicated by its detection at 22 stations in summer but only one station in winter. The abundance of Y. yeosuensis was significantly and positively correlated with those of Pyramimonas sp. and T. amphioxeia, as well as with water temperature. The highest abundance of Y. yeosuensis was 48.5 cells mL-1 in Buan in July 2017, when the abundances of Pyramimonas sp. and T. amphioxeia were 917.6 and 210.4 cells mL-1, respectively. The growth rate of Y. yeosuensis on Pyramimonas sp., calculated by interpolating the growth rates at the same abundance, was 0.49 d-1, which is 37% of the maximum growth rate of Y. yeosuensis on Pyramimonas sp. obtained in the laboratory. Therefore, the field abundance of Pyramimonas sp. obtained in the present study can support a moderate positive growth of Y. yeosuensis. The maximum grazing coefficient for Y. yeosuensis on the co-occurring Pyramimonas sp. was 0.42 d-1, indicating that 35% of the Pyramimonas sp. population were consumed in 1 d. Therefore, the spatio-temporal distribution of Y. yeosuensis in Korean coastal waters may be affected by those of the optimal prey species and water temperature. Moreover, Y. yeosuensis may potentially have considerable grazing impacts on populations of Pyramimonas sp.
Keywords
food web; harmful algal bloom; mixotrophy; qPCR; red tide; temperature;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Lee, S. Y., Jeong, H. J., Seong, K. A., Lim, A. S., Kim, J. H., Lee, K. H., Lee, M. J. & Jang, S. H. 2017b. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods. Harmful Algae 63:23-31.   DOI
2 Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18.   DOI
3 Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761.   DOI
4 McFadden, G. I., Hill, D. R. A. & Wetherbee, R. 1986. A study of the genus Pyramimonas (Prasinophyceae) from southeastern Australia. Nord. J. Bot. 6:209-234.   DOI
5 Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013a. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40.   DOI
6 Hansen, P. J., Bjornsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-${\mu}m$ body size range. Limnol. Oceanogr. 42:687-704.   DOI
7 Smith, K. F., Rhodes, L., Harwood, D. T., Adamson, J., Moisan, C., Munday, R. & Tillmann, U. 2016. Detection of Azadinium poporum in New Zealand: the use of molecular tools to assist with species isolations. J. Appl. Phycol. 28:1125-1132.   DOI
8 Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311-335.   DOI
9 Stoecker, D. K., Li, A., Coats, D. W., Gustafson, D. E. & Nannen, M. K. 1997. Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 152:1-12.   DOI
10 Stonik, I. V. 2009. Species composition and seasonal dynamics of the population density and biomass of the genus Pyramimonas (Prasinophyceae) from the Russian waters of East/Japan Sea. Ocean Sci. J. 44:21-26.   DOI
11 Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI
12 Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryotic. Microbiol. 46:390-396.   DOI
13 Jang, S. H., Jeong, H. J. & Chon, J. K. 2019. De novo transcriptome of the newly described phototrophic dinoflagellate Yihiella yeosuensis: comparison between vegetative cells and cysts. Mar. Biol. 166:104.   DOI
14 Jang, S. H., Jeong, H. J., Kwon, J. E. & Lee, K. H. 2017a. Mixotrophy in the newly described dinoflagellate Yihiella yeosuensis: a small, fast dinoflagellate predator that grows mixotrophically, but not autotrophically. Harmful Algae 62:94-103.   DOI
15 Jang, S. H., Jeong, H. J., Moestrup, O., Kang, N. S., Lee, S. Y., Lee, K. H. & Seong, K. A. 2017b. Yihiella yeosuensis gen. et sp. nov. (Suessiaceae, Dinophyceae), a novel dinoflagellate isolated from the coastal waters of Korea. J. Phycol. 53:131-145.   DOI
16 Jeong, H. J., Ha, J. H., Park, J. Y., Kim, J. H., Kang, N. S., Kim, S., Kim, J. S., Yoo, Y. D. & Yih, W. H. 2006. Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes and fish blood cells. Aquat. Microb. Ecol. 44:263-278.   DOI
17 Jeong, H. J., Kang, H. C., You, J. H. & Jang, S. H. 2018. Interactions between the newly described small- and fastswimming mixotrophic dinoflagellate Yihiella yeosuensis and common heterotrophic protists. J. Eukaryotic. Microbiol. 65:612-626.   DOI
18 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
19 Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418.   DOI
20 Tas, S. & Yilmaz, I. N. 2015. Potentially harmful microalgae and algal blooms in a eutrophic estuary in Turkey. Mediterr. Mar. Sci. 16:432-443.   DOI
21 Van Valkenburg, S. D., Jones, J. K. & Heinle, D. R. 1978. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuar. Coast. Mar. Sci. 6:569-582.   DOI
22 Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 36:165-170.   DOI
23 Sherr, E. B. & Sherr, B. F. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352:187-197.   DOI
24 Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013b. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143.   DOI
25 Parry, G. D., Langdon, J. S. & Huisman, J. M. 1989. Toxic effects of a bloom of the diatom Rhizosolenia chunii on shellfish in Port Phillip Bay, southeastern Australia. Mar. Biol. 102:25-41.   DOI
26 Schmidt, K., Kahler, P. & von Bodungen, B. 1998. Copepod egg production rates in the Pomeranian Bay (Southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition. Mar. Ecol. Prog. Ser. 174:183-195.   DOI
27 Shumway, S. E., Burkholder, J. M. & Morton, S. L. 2018. Harmful algal blooms: a compendium desk reference. John Wiley & Sons, Hoboken, NJ, 667 pp.
28 Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86.   DOI
29 Kim, D. -I., Matsuyama, Y., Nagasoe, S., Yamaguchi, M., Yoon, Y. -H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26:61-66.   DOI
30 Kim, M. -H., Ji, H. -S., Cho, J. -G. & Cho, S. 2018. Identification of red tide-causing organism and characteristics of red tide occurrence in the Oncheon Down Stream, Busan. J. Korean Soc. Water Environ. 34:285-292. (in Korean)   DOI
31 Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, G. & Kim, J. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158.   DOI
32 Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420.   DOI
33 Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii. Harmful Algae 49:124-134.   DOI
34 Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125.   DOI
35 Lee, K. H., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H. & Park, S. A. 2019a. Growth rates and nitrate uptake of cooccurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34:237-251.   DOI
36 Lee, K. H., Jeong, H. J., Kim, H. J. & Lim, A. S. 2017a. Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity. Algae 32:139-153.   DOI
37 Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016a. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81.   DOI
38 Lee, M. J., Jeong, H. J., Jang, S. H., Lee, S. Y., Kang, N. S., Lee, K. H., Kim, H. S., Wham, D. C. & LaJeunesse, T. C. 2016b. Most low-abundance "background" Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb. Ecol. 71:771-783.   DOI
39 Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152.   DOI
40 Lee, S. Y., Jeong, H. J., Kwon, J. E., You, J. H., Kim, S. J., Ok, J. H., Kang, H. C. & Park, J. Y. 2019b. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea. Algae 34:7-21.   DOI
41 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
42 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
43 Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010a. Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquat. Microb. Ecol. 59:239-255.   DOI
44 Jeong, H. J., Yoo, Y. D., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S. & Yih, W. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. J. Eukaryotic. Microbiol. 51:563-569.   DOI
45 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010b. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
46 Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005a. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150.   DOI
47 Adolf, J. E., Bachvaroff, T. & Place, A. R. 2008. Can cryptophyte abundance trigger toxic Karlodinium veneficum blooms in eutrophic estuaries? Harmful Algae 8:119-128.   DOI
48 Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130.   DOI
49 Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106.   DOI
50 Jeong, H. J., Shim, J. H., Kim, J. S., Park, J. Y., Lee, C. W. & Lee, Y. 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser. 176:263-277.   DOI
51 Andreoli, C., Moro, I., La Rocca, N., Valle, L. D., Masiero, L., Rascio, N. & Vecchia, F. D. 2000. Ecological, physiological, and biomolecular surveys on microalgae from Ross Sea (Antarctica). Ital. J. Zool. 67(S1):147-156.
52 Berge, T., Hansen, P. J. & Moestrup, O. 2008. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:279-288.   DOI
53 Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019b. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126.   DOI
54 Bergesch, M., Odebrecht, C. & Moestrup, O. 2008. Nanoflagellates from coastal waters of southern Brazil ($32^{\circ}S$). Bot. Mar. 51:35-50.   DOI
55 Burkholder, J. M., Glasgow, H. B. Jr. & Hobbs, C. W. 1995. Fish kills linked to a toxic ambush-predator dinoflagellate: distribution and environmental conditions. Mar. Ecol. Prog. Ser. 124:43-61.   DOI
56 Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H. & Yih, W. H. 2005b. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol. 38:249-257.   DOI
57 Johnson, M. D., Beaudoin, D. J., Laza-Martinez, A., Dyhrman, S. T., Fensin, E., Lin, S., Merculief, A., Nagai, S., Pompeu, M., Setala, O. & Stoecker, D. K. 2016. The genetic diversity of Mesodinium and associated cryptophytes. Front. Microbiol. 7:2017.
58 Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. 2019a. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34:127-140.   DOI
59 Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K. & Kim, G. 2011. Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from western Korean waters: feeding mechanism, prey species and effect of prey concentration. J. Eukaryotic. Microbiol. 58:152-170.   DOI
60 Kibbe, W. A. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35(Suppl. 2):W43-W46.   DOI
61 Herfort, L., Maxey, K., Voorhees, I., Simon, H. M., Grobler, K., Peterson, T. D. & Zuber, P. 2017. Use of highly specific molecular markers reveals positive correlation between abundances of Mesodinium cf. major and its preferred prey, Teleaulax amphioxeia, during red water blooms in the Columbia river estuary. J. Eukaryot. Microbiol. 64:740-755.   DOI
62 Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063-1085.
63 Daugbjerg, N., Moestrup, O. & Arctander, P. 1994. Phylogeny of the genus Pyramimonas (Prasinophyceae, Chlorophyta) inferred from the rbcL gene. J. Phycol. 30:991-999.   DOI
64 Domingos, P. & Menezes, M. 1998. Taxonomic remarks on planktonic phytoflagellates in a hypertrophic tropical lagoon (Brazil). Hydrobiologia 369:297-313.   DOI
65 Egge, J. K. & Aksnes, D. L. 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83:281-289.   DOI
66 Glasgow, H. B. Jr., Burkholder, J. M., Schmechel, D. E., Tester, P. A. & Rublee, P. A. 1995. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J. Toxicol. Environ. Health 46:501-522.   DOI
67 Glibert, P. M., Burkholder, J. M., Kana, T. M., Alexander, J., Skelton, H. & Shilling, C. 2009. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55:17-30.   DOI
68 Hajdu, S., Hoglander, H. & Larsson, U. 2007. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6:189-205.   DOI
69 Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214.   DOI
70 Hansen, P. J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114:327-334.   DOI
71 Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409.   DOI