• 제목/요약/키워드: Algae Culture

검색결과 258건 처리시간 0.033초

Development of a Functional Mortar for Restraining Surface Algal Growth

  • Park, Soon-young;Kim, Jinhyun;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • 제5권2호
    • /
    • pp.82-87
    • /
    • 2018
  • Proliferation of algae on the surface of concrete or mortar in aquatic habitat has a negative impact on maintenance of concrete-based structures. Growth of algae may decrease stability of structure by bio-deterioration. In this study, we developed a functional mortar for restraining bio-deterioration by using $Cu^{2+}$ ion. The mortar contains soluble glass beads made of $Cu^{2+}$ ion, which can dissolve into water slowly. Mortars prepared with different ratio of glass beads (0, 2, 5, 10, and 15%) were placed in a culture medium with algae and incubated over a month period. Water chemistry, chlorophyll-a, and extracellular enzyme activities were measured. The incubation was conducted in both freshwater and seawater conditions, to assess applicability to both aquatic conditions. Overall, mortar with Cu glass exhibited lower chlorophyll-a content, suggesting that the functional mortar reduced algal growth. DOC concentration increased because debris of dead algae increased. Cu glass also decreased phosphatase activity, which is involved in the regeneration of inorganic P from organic moieties. Since, P is often a limiting nutrient for algal production, algal growth may be inhibited. Activities of ${\beta}$-glucosidase and N-acetylglucosaminidase were not significantly affected because carbon and nitrogen mineralization may not be influenced by the Cu glass beads. Our study suggests that functional mortar with Cu glass beads may reduce the growth of algae on the surface, while it has little environmental impact.

Effects of potassium and carbon addition on bacterial algae bioremediation of boezem water

  • Nurhayati, Indah;Ratnawati, Rhenny;Sugito, Sugito
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.495-500
    • /
    • 2019
  • Bioremediation of bacterial algae is one of wastewater treatment by utilizing symbiosis of bacterial algae, which is relatively inexpensive and safe for the environment. The aims of this research were: (1) to investigate initial characteristic of boezem water of Kalidami Surabaya, (2) to investigate the effect of potassium (K) element and carbon source addition toward the reduction of $NH_3-N$ content and organic matter in $KMnO_4$ of boezem water. The research conducted in a laboratory in batches without adding aeration. The initial stage of this research was conducting alga culture until it was obtained chlorophyll-a algae concentration of $3.5{\pm}0.5mg/L$. The best result of range finding test was a comparison of boezem water volume with algal which were about 25%:75%. The research conducted in duplo over 18 d. The result of the research can be concluded that boezem water of Kalidami Surabaya for the parameter of pH, temperature, $NH_3-N$, dissolved oxygen, chemical oxygen demand, biological oxygen demand, and number of $KMnO_4$ show that it enables to do bioremediation of bacterial algae. Decrease efficiency occurred in a reactor with the addition of element K 3% and source C. $NH_3-N$ and $KMnO_4$ final content 0.164 mg/L and 30 mg/L, respectively.

Insertional mutations exhibiting high cell-culture density HCD phenotypes are enriched through continuous subcultures in Chlamydomonas reinhardtii

  • Thung, Leena;He, Jing;Zhu, Qingling;Xu, Zhenyu;Liu, Jianhua;Chow, Yvonne
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.127-141
    • /
    • 2018
  • Low efficiency in microalgal biomass production was largely attributed to the low density of algal cell cultures. Though mutations that reduced the level of chlorophyll or pigment content increased efficiency of photon usage and thus the cell-culture density under high-illumination growth conditions (e.g., >$500{\mu}mol\;photon\;m^{-2}\;s^{-1}$), it was unclear whether algae could increase cell-culture density under low-illumination conditions (e.g., ${\sim}50{\mu}mol\;photon\;m^{-2}\;s^{-1}$). To address this question, we performed forward genetic screening in Chlamydomonas reinhardtii. A pool of >1,000 insertional mutants was constructed and subjected to continuous subcultures in shaking flasks under low-illumination conditions. Complexity of restriction fragment length polymorphism (RFLP) pattern in cultures indicated the degree of heterogeneity of mutant populations. We showed that the levels of RFLP complexity decreased when cycles of subculture increased, suggesting that cultures were gradually populated by high cell-culture density (HCD) strains. Analysis of the 3 isolated HCD mutants after 30 cycles of subcultures confirmed that their maximal biomass production was 50-100% higher than that of wild type under low-illumination. Furthermore, levels of chlorophyll content in HCD mutant strains were similar to that of wild type. Inverse polymerase chain reaction analysis identified the locus of insertion in two of three HCD strains. Molecular and transcriptomic analyses suggested that two HCD mutants were a result of the gain-of-function phenotype, both linking to the abnormality of mitochondrial functions. Taken together, our results demonstrate that HCD strains can be obtained through continuous subcultures under low illumination conditions.

Chlorella pyrenoidosa의 생장 특성 및 동일 균주로부터 Acetaldehyde Dehydrogenase의 활성 검출 (Cellular Growth Traits and Detection of Acetaldehyde Dehydrogenase from Chlorella pyrenoidosa)

  • 이준우
    • 미생물학회지
    • /
    • 제45권4호
    • /
    • pp.385-390
    • /
    • 2009
  • 광합성 담수 녹조류인 Chlorella pyrenoidosa의 최적 생장 조건을 알기 위해 배양 온도, 시간, 영양물질의 영향 및 조도 등을 조사하였다. Growth chamber를 사용하여 알아본 가장 적절한 조건은 온도 $28^{\circ}C$에서 4일간 배양했을 때이며 배지에 첨가된 타 영양물질의 농도가 높을수록 활발한 광합성을 하면서 생장하였고 조도(Lux)가 크면 클 수록 잘 자랐다. 또한 동일 균주로부터 acetaldehyde를 분해하는 효소의 활성을 살펴보았는데 이 효소는 $\beta$-$NAD^+$를 조효소로 하는 탈수소효소였으며, ODS-Hypersil column과 50%(v/v) acetonitrile을 이동상으로 한 HPLC로 분석한 결과 pH 9.0, 온도 $40^{\circ}C$ 부근에서 최대 효소 활성을 보여주었다.

Experiences with Some Toxic and Relatively Accessible Heavy Metals on the Survival and Biomass Production of Amphora costata W. Smith

  • Mandal, Subir Kumar;Joshi, Vithaldas Hemantkumar;Bhatt, Devabratta Chandrashanker;Jha, Bhavanath;Ishimaru, Takashi
    • ALGAE
    • /
    • 제21권4호
    • /
    • pp.471-477
    • /
    • 2006
  • Amphora costata W. Smith 1853 is a down thrown diatom species and also known as metal corrosive ship-fouling organism. A. costata was isolated from Alang ship breaking yard, Alang and evaluated the toxicity tolerance and growth responses of the cultures exposed to different doses of toxic and relatively accessible heavy metals, such as Fe, Mn, Cd, Co, Cu, Zn, Ni, and Pb in the constantly monitored laboratory culture conditions. The strongest toxic effect was observed on A. costata exposed to Cd even at relatively low concentrations as compared to other metals. The following trend of decreasing order of toxicity i.e. Cd>Zn>Ni>Co>Pb>Cu>Fe was observed, when they were exposed to equal concentration and expose time.

조류생산잠재력조사 방법개발에 의한 육수환경의 부영양화 방지대책에 관한 연구(I) -순수분리종의 형태 및 증식특성- (A Study on Protection Plan of Eutrophication in Fresh Water Environment by Development of Methods for Algal Growth Potential test (I) -Morphology and Growth Characteristics of Isolated algae-)

  • 위인선;나철호;이종빈;주현수
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.18-27
    • /
    • 1997
  • The isolation, morphological study and growth characteristics of the algae were investigated from Lake Chuam. The isolated algae were applied the Agal Growth Potential test. The method of isolation and purification of the algae were used to Agar plating(AP), nutrient enrichment(NE), dilution(DI) and micro capillary technique(MC). Total isolated algae were 21 species. They were composed of Cyanophyceae, Dinophyceae, Bacillariophyceae, Euglenophyceae and Chlorophyceae. The numbers of algal strain by isolation technique were highest in dilution(21 species), and those of the rests were showed in order of NE > MC > AP. The sizes of isolated Selenastrum and Scenedesmus were $1.8\pm 1.4 \mu m$, $3.3\pm 0.9 \mu m$ in diameter and $6.4\pm 2.3 \mu m$, $13.6\pm 1.9 \mu m$ in length respectively. The morphology of isolated algae and NIES-collection strain was very similar each other, but the size was smaller isolated algae than that of NIES-collection. The optimum culture condition of isolated Selenastrum and Scenedesmus was about 30$\circ$C(25$\circ$C-35$\circ$C) in temperature and the maximum growth was appeared between 7,000 lux and 8,000 lux in the light intensity. The comparison of $\mu$(specific growth rate) on the concentration of nutrients such as nitrate and phosphate, isolated Selenastrum was appeared maximum it at 1.0 mg $NO_3-N/l$ but NIES-collection strain was showed 95% of maximum it at same nitrate concentration. Maximum g of isolated algae and NIES-collection strain in Scenedesmus onto nitrate concentration were very similar with the result of selenastrum. The specific growth rates of isolated algae and NIES-collection strain on the gradient concentration of phosphate were showed 0.72/day and 0.70/day at 0.02 mg $PO_4-P/l$ in Selenastrum but those of Scenedesmus were appeared 0.61/day and 0.57/day at same concentration $PO_4-P$.

  • PDF

하천 생태계에서 유기탄소 기질 제거에 조류와 세균의 공생작용이 미치는 영향 (Effect of Bacterial and Algal Symbiotic Reaction on the Removal of Organic Carbon in River Ecosystem)

  • 공석기;도시유끼나까지마
    • 환경위생공학
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2001
  • It have been investigated how algal and bacterial symbiotic reaction influences on removal of organic carbon in river ecosystem. And artificial experimentation apparatus was made for algae'and bacteia'culture as lab scale. Investigating and researching minutely the change of concentration of organic carbon substrate and the change of population density of algae'and of bacteria'with this artificial experimentation apparatus, the next results could be obtained. 1. Successful decrease of DOC(dissolved organic carbon) could not be expected unless algal and bacterial biomass floe was nut formed effectively and unless biosorption was not proceeded effectively in the very culture system in which artificial synthetic wastewater was supplied continuously at constant rate. 2. In conditions of culture liquid of 1335 glucnse mg/L(type 1) and of 267 glucose mg:L(type 2), the algal dominant species was always Chlorella vulgaris in both types in which artificial synthetic wastewater were supplied continuously at constant rate and algae population density was around maximum 107 cells/mL. 3. It was around 108 ~ 107 cells/mL that the population density of heterotrophic bacterium. In culture medium systems type 1 and type 2 in which artificial wastewater were supplied continuously at constant rate, the same density appeared initially when using the population density of Escherichia coli w 3110 as indirect indicator. And this density decreased rapidly till the culturing date 35 days were passed away, while this density increased with gentle slope after same date and then the trend of change at type 2 was more severe than one at type 1. 4. When seeing such a change of population density of Escherichia coli w 3110, the growth of heterotrophic bacterium appeared as survival instinct pattern of broader requirement of nutrient at condition of low concentration of organic carbon substrate than condition of high concentration of same substrate.

  • PDF

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • 생태와환경
    • /
    • 제40권4호
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.

Effects of Deep Seawater on the Growth of a Green Alga, Ulva sp.(Ulvophyceae, Chlorophyta)

  • Matsuyama, Kazuyo;Serisawa, Yukihiko;Nakashima, Toshimitsu
    • ALGAE
    • /
    • 제18권2호
    • /
    • pp.129-134
    • /
    • 2003
  • In order to examine the effects of deep seawater (mesopelagic water in the broad sense) on the growth of macroalgae, the growth and nutrient uptake (nitrate and phosphate) of Ulva sp. (Ulvophyceae, Chlorophyta) were investigated by cultivation in deep seawater (taken from 687 m depth at Yaizu, central Japan, in August 2001), surface seawater (taken from 24 m depth), and a combination of the two. Culture experiments were carried out in a continuous water supply system and an intermittent water supply system, in which aerated 500-mL flasks with 4 discs of Ulva sp. (cut sections of ca. 2 $cm_2$) were cultured at 20$^{\circ}C$ water temperature, 100 $\mu$mol photons $m^{-2}{\cdot}s^{-1}$ light intensity, and a 14:10 light:dark cycle. Nutrient uptake by Ulva sp. was high in all seawater media in both culture systems. The frond area, dry weight, chlorophyll a content, dry weight per unit area, and chlorophyll a content per unit area of Ulva sp. at the end of the experimental period were the highest in deep seawater and the lowest in surface seawater in both culture systems. These values, except for dry weight per unit area and chlorophyll a content per unit area, for each seawater media in the intermittent water supply system were higher than those in the continuous water supply system. We conclude that not only deep seawater as the culture medium but also the seawater supply system is important for effective cultivation of macroalgae.

Life History of Porphyra seriata Kjellman (Bangiales, Rhodophyta) from Korea in Laboratory Culture

  • Kim, Nam-Gil;Notoya, Masahiro
    • ALGAE
    • /
    • 제19권4호
    • /
    • pp.303-309
    • /
    • 2004
  • The laboratory culture study of Porphyra seriata Kjellman from Korea was conducted at different conditions of temperatures (5, 10, 15, 20, 25 and 30${^{\circ}C}$), photon flux densities (10, 20, 40 and 80 $\mu$mol $^{-2}s^{-1}$) and photoperiods (14L: 10D and 10L:14D). Conchocelis filaments grew fast at 15-20${^{\circ}C}$ and 20-80 $\mu$mol $^{-2}s^{-1}$ under both photoperiods. Concho sporangial branches were produced at 5-25${^{\circ}C}$, and abundant when the conchocelis filaments were cultured at higher temperatures of 20-25${^{\circ}C}$ under both photoperiods. Foliose thalli grew well at 15-20${^{\circ}C}$ under 10L:14D and at 20${^{\circ}C}$ under 14L:10D. At 30${^{\circ}C}$, the foliose thallus failed to survive. No archespores were observed at any culture conditions. Spermatangia and zygotosporangia were formed in squarish patches at the upper marginal portion of mature thalli. Anatomical examination revealed that the mature spermatangia were 64 (a/4, b/2, c/8) and 128 (a/4, b/4, c/8), and that of zygotosporangium was 16 (a/2, b/2, c/4) according to the Hus' formula.