• 제목/요약/키워드: Algae Cultivation

검색결과 89건 처리시간 0.02초

Astaxanthin in microalgae: pathways, functions and biotechnological implications

  • Han, Danxiang;Li, Yantao;Hu, Qiang
    • ALGAE
    • /
    • 제28권2호
    • /
    • pp.131-147
    • /
    • 2013
  • Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.

Effects of Deep Seawater on the Growth of a Green Alga, Ulva sp.(Ulvophyceae, Chlorophyta)

  • Matsuyama, Kazuyo;Serisawa, Yukihiko;Nakashima, Toshimitsu
    • ALGAE
    • /
    • 제18권2호
    • /
    • pp.129-134
    • /
    • 2003
  • In order to examine the effects of deep seawater (mesopelagic water in the broad sense) on the growth of macroalgae, the growth and nutrient uptake (nitrate and phosphate) of Ulva sp. (Ulvophyceae, Chlorophyta) were investigated by cultivation in deep seawater (taken from 687 m depth at Yaizu, central Japan, in August 2001), surface seawater (taken from 24 m depth), and a combination of the two. Culture experiments were carried out in a continuous water supply system and an intermittent water supply system, in which aerated 500-mL flasks with 4 discs of Ulva sp. (cut sections of ca. 2 $cm_2$) were cultured at 20$^{\circ}C$ water temperature, 100 $\mu$mol photons $m^{-2}{\cdot}s^{-1}$ light intensity, and a 14:10 light:dark cycle. Nutrient uptake by Ulva sp. was high in all seawater media in both culture systems. The frond area, dry weight, chlorophyll a content, dry weight per unit area, and chlorophyll a content per unit area of Ulva sp. at the end of the experimental period were the highest in deep seawater and the lowest in surface seawater in both culture systems. These values, except for dry weight per unit area and chlorophyll a content per unit area, for each seawater media in the intermittent water supply system were higher than those in the continuous water supply system. We conclude that not only deep seawater as the culture medium but also the seawater supply system is important for effective cultivation of macroalgae.

축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발 (Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • 제15권1호
    • /
    • pp.14-21
    • /
    • 2000
  • 본 연구는 조류의 고농도 배양을 통하여 축산폐수로부터 질소, 인등의 영양염류를 효과적으로 제거하여 환경오염을 감소시키는 것을 목적으로 한다. 이를 위하여 조류성장의 환경적 요소인 질소/인 농도비에 대한 질소와 인의 제거효율 분석 실험을 통하여 질적 질소/인 농도비를 결정하였다. 고농도 조류 배양을 위한 광도의 균일한 공급을 위하여 광섬유를 이용한 광생물반응기를 공정에 적용하였다. 제안된 광섬유를 이용한 광생물반응기는 광원으로부터 반응기 전체로 효과적인 광전달을 수행하는 것을 확인하였다. 조류 배양에서 조류의 성장과 질소, 인의 제거를 표현하기 위해서 구조적 속도식 모델을 제시하였다. 유전알고리즘을 이용한 자기구성퍼지 제어기를 구성하여 반연속식 폐수처리공정의 제어를 수행하였다. 구성된 퍼지 제어기는 폐수의 유입량 조절을 통하여 질소의 농도를 주어진 설정치로 유지되도록 운전하였다. 실험 결과에 의해 자기구성 퍼지 제어기는 원하는 질소의 농도를 잘 유지함은 물론 조류의 성장을 증진시킴을 알 수 있었다.

  • PDF

A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact

  • Kim, Gwang Hoon;Moon, Kyoung-Hyoun;Kim, Je-Yoon;Shim, Junbo;Klochkova, Tatyana A.
    • ALGAE
    • /
    • 제29권4호
    • /
    • pp.249-265
    • /
    • 2014
  • As with land crops, cultivated algae are affected by various diseases ranging from large outbreaks of a disease to chronic epiphytes, which may downgrade the value of the final product. The recent development of intensive and dense mariculture practices has enabled some new diseases to spread much faster than before. A new disease is reported almost every year, and the impact of diseases is expected to increase with environmental change, such as global warming. We observed the incidence of diseases in two Pyropia sea farms in Korea from 2011 to 2014, and estimated the economic loss caused by each disease. Serious damage is caused by the oomycete pathogens, Pythium porphyrae and Olpidiopsis spp., which decreased the productivity of the Pyropia sea farms. In Seocheon sea farms, an outbreak of Olpidiopsis spp. disease resulted in approximately US $1.6 million in loss, representing approximately 24.5% of total sales during the 2012-2013 season. The damage caused by green-spot disease was almost as serious as oomycete diseases. An outbreak of green-spot disease in the Seocheon sea farms resulted in approximately US $1.1 million in loss, representing 10.7% of total sales in the 2013-2014 season in this area. However, the causative agent of green-spot disease is still not confirmed. "Diatom felt" is regarded as a minor nuisance that does not cause serious damage in Pyropia; however, our case study showed that the economic loss caused by "diatom felt" might be as serious as that of oomycete diseases. Bacteria and cyanobacteria are indigenous members of epiphytic microbial community on Pyropia blades, but can become opportunistic pathogens under suitable environmental conditions, especially when Pyropia suffers from other diseases. A regular acid wash of the Pyropia cultivation nets is the most common treatment for all of the above mentioned diseases, and represents approximately 30% of the total cost in Pyropia sea farming. However, the acid wash is ineffective for some diseases, especially for Olpidiopsis and bacterial diseases.

Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production

  • Lim, An Suk;Jeong, Hae Jin;You, Ji Hyun;Park, Sang Ah
    • ALGAE
    • /
    • 제35권3호
    • /
    • pp.277-292
    • /
    • 2020
  • Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids beneficial to human health. A limited number of microalgae have been used for commercial omega-3 production, which necessitates the identification of new microalgae with high omega-3 contents. We explored the fatty acid composition and EPA and DHA contents of the mixotrophic dinoflagellate Gymnodinium smaydae fed with the optimal algal prey species Heterocapsa rotundata. Cells of G. smaydae were found to be rich in omega-3 fatty acids. In particular, the DHA content of G. smaydae was 21 mg g-1 dry weight, accounting for 43% of the total fatty acid content. The percentage of DHA in the total fatty acid content of G. smaydae was the highest among the reported microalgae except for Crypthecodinium cohnii. Moreover, to determine if the prey supply interval affected the growth rate of G. smaydae and its fatty acid content, three different prey supply intervals (daily, once every 2 d, and once for 4 d) were tested. Daily prey supply yielded the highest total fatty acid and DHA contents in G. smaydae. Furthermore, we successfully produced high-density G. smaydae cultures semi-continuously for 43 d with daily prey supply. During the semi-continuous cultivation period, the highest density of G. smaydae was 57,000 cells mL-1, with an average growth rate of 0.7 d-1. Taken together, the percentage of EPA and DHA in the total fatty acid content was maintained in the range of 54.2-56.9%. The results of this study support G. smaydae as a promising microalgal candidate for commercial DHA production and demonstrate that daily supply of prey can efficiently produce high-density G. smaydae cultures for more than a month.

Comparison of the cultivation performance between Korean (Sugwawon No. 301) and Chinese strains (Huangguan No. 1) of kelp Saccharina japonica in an aquaculture farm in Korea

  • Hwang, Eun Kyoung;Liu, Fuli;Lee, Ki Hyun;Ha, Dong Su;Park, Chan Sun
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.101-108
    • /
    • 2018
  • Saccharina japonica was introduced to both Korea and China from Hokkaido, Japan, and it has become an economically important species in both nations. After a long period of cultivation, several varieties of S. japonica have been developed in Korea and China. In this study, we conducted aquacultural research on the persistence of thalli from two kelp cultivars, one from China (Huangguan No. 1) and one from Korea (Sugwawon No. 301), between December 2015 and November 2016 in Haenam, Korea. The maximum length was $247.8{\pm}13.0$ and $227.5{\pm}42.0cm$, respectively, which were significantly longer in Sugwawon No. 301 than in Huangguan No. 1. The maximum width was $29.9{\pm}5.4$ and $23.2{\pm}1.9cm$, respectively, which were significantly wider in Huangguan No. 1 than in Sugwawon No. 301. The mean biomass obtained from the culture ropes was for Sugwawon No. 301 was $3.5{\pm}0.3kg\;wet\;wt\;m^{-1}$ and for while Huangguan No. 1 was $3.1{\pm}1.0kg\;wet\;wt\;m^{-1}$ of culture rope. After August, the persistence of the thalli of Sugwawon No. 301 was two months longer than that of Huangguan No. 1. We found that the Sugwawon No. 301 performed as well as the Huangguan No. 1 in Korean waters possibly due to increased flexibility as a result of the different cell arrangements of the two cultivars. Overall, the use of the Sugwawon No. 301 cultivar rather than the Huangguan No. 1 cultivar of S. japonica appears the best alternative to help to ensure a stable year round algal feed supply for the Korean abalone industry.

The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta)

  • Contreras-Pool, Patricia Yolanda;Peraza-Echeverria, Santy;Ku-Gonzalez, Angela Francisca;Herrera-Valencia, Virginia Aurora
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.267-276
    • /
    • 2016
  • Microalgae are currently a very promising source of biomass and triacylglycerol (TAG) for biofuels. In a previous study, we identified Chlorella saccharophila as a suitable source of oil for biodiesel production because it showed high biomass and lipid content with an appropriate fatty acid methyl esters profile. To improve the TAG accumulation in C. saccharophila, in this study we evaluated the effect of abscisic acid (ABA) addition on cell concentration, lipid content and TAG production in this microalga. First, we evaluated the effects of four ABA concentrations (1, 4, 10, and 20 μM) added at the beginning of a single-stage cultivation strategy, and found that all concentrations tested significantly increased cell concentration and TAG content in C. saccharophila. We then evaluated the addition of 1 μM ABA during the second stage of a two-stage cultivation strategy and compared it with a nitrogen deficiency treatment (ND) and a combination of ND and ABA (ND + ABA). Although ABA alone significantly increased lipid and TAG contents compared with the control, ND showed significantly higher TAG content, and ND + ABA showed the highest TAG content. When comparing the results of both strategies, we found a superior response in terms of TAG accumulation with the addition of 1 μM ABA at the beginning of a single-stage cultivation system. This strategy is a simple and effective way to improve the TAG content in C. saccharophila and probably other microalgae as a feedstock for biodiesel production.

Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta)

  • Ko, Shin Ja;Kim, Yoo Kyung;Hong, Seong Wan;Kang, Min Su;Park, Chan Sun;Hwang, Eun Kyoung;Lee, Young Don
    • ALGAE
    • /
    • 제35권2호
    • /
    • pp.123-131
    • /
    • 2020
  • Sargassum macrocarpum is a rich source of anti-inflammatory compounds. Recently, one of the compounds, tuberatolide B, has been reported as a functional anti-inflammatory additive for foods and nutraceuticals. The artificial seeding, growth and maturation of S. macrocarpum were investigated from May 2018 to September 2019. Indoor culture experiments for induction of egg release were conducted at temperatures of 17, 20, 23, and 26℃ and irradiances of 0, 10, 20, 40, and 80 μmol photons m-2 s-1 under 14 : 10 h (L : D) photoperiod. Within a given treatment combination, higher temperatures and irradiance levels favoured the maturation of receptacles in S. macrocarpum. Using artificial temperature and irradiance control, thalli matured one month earlier than thalli in nature. Under natural condition, receptacle formation began in April, and the eggs were released in June and July. The release of eggs from the receptacles was promoted at 17-20℃ and 40-80 μmol photons m-2 s-1, and the fastest growth of germlings occuring at 15-17℃ and 40 μmol photons m-2 s-1. For mature thalli, 300 g wet-weight was sufficient to seed 100 m of seed string. Thalli grew to 10.5 ± 2.6 cm in length at a density of 6.7 ± 3.3 individuals m-1 after 1 year of cultivation, from germination. This study demonstrates that it is possible to cultivate S. macrocarpum for the production of anti-inflammatory products.

Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae)

  • Tarakhovskaya, Elena R.;Kang, Eun-Ju;Kim, Kwang-Young;Garbary, David J.
    • ALGAE
    • /
    • 제27권2호
    • /
    • pp.125-134
    • /
    • 2012
  • Germanium dioxide ($GeO_2$) has been used for many years in the cultivation of red and green algae as a means of controlling the growth of diatoms. Brown algae are sensitive to $GeO_2$, however, the basis of this sensitivity has not been characterized. Here we use embryos of $Fucus$ $vesiculosus$ to investigate morphological and physiological impacts of $GeO_2$ toxicity. Morphometric features of embryos were measured microscopically, and physiological features were determined using pulse amplitude modulated (PAM) fluorometry. At 5 mg $L^{-1}$ $GeO_2$, embryos grew slower than controls and developed growth abnormalities. After 24 h, initial zygote divisions were often oblique rather than transverse. Rhizoids had inflated tips in $GeO_2$ and were less branched, and apical hairs were deformed, with irregularly aligned, spheroidal cells. Minimum fluorescence ($F_0$) showed minor differences over the 10 days experiment, and pigment levels (chlorophylls $a$, $c$ and total carotenoids) showed no difference after 10 days. Optimum quantum yield increased from ca. 0.52 at 24 h to 0.67 at 5 days, and $GeO_2$-treated embryos had higher mean values (significant at 3 and 5 days). Optimum quantum yield of photosystem II (${\Phi}_{PSII}$) was stable in control thalli after 5 days, but declined significantly in $GeO_2$. Addition of silica (as $SiO_2$) did not reverse the effects of $GeO_2$. These results suggest that $GeO_2$ toxicity in brown algae is associated with negative impacts at the cytological level rather than metabolic impacts associated with photosynthesis.

고율 조류 바이오매스 반응기에서 조사시간으로 본 Zygnema sterile과 Lepocinclism textra 바이오매스의 질소, 인 이온 생흡착의 비교 (Comparison of Biosorption of N, P ions by Zygnema sterile and Lepocinclism textra Biomass under Irradiation Period in High Rate Algae Biomass Reactor)

  • 공석기
    • 환경위생공학
    • /
    • 제22권4호
    • /
    • pp.11-21
    • /
    • 2007
  • The recent investigation indicates that the kinetic constants for anionic ions were merely the result of ion exchange between the algae cell wall surface and the anionic ion. In this study, Zygnema sterile and Lepocinclism textra, floating flagellate alga as the dominant algae strains, were cultivated using HRABR(High Rate Algae Biomass Reactor) and the cultivation conditions were 24 hrs. and 12 hrs. irradiation and it was studied how this algal biomass acts on the biosorption mechanism of anionic N and P. Results are as follows : 1. Calculating the specific chl.-a growth rate using Michaelis-Menten model, the one of 24hrs. irradiation was about 55 times higher than the one of 12 hrs. irradiation 2. Calculating the specific chl.-a growth rate using Kuo model, the one of 24 hrs. irradiation was about 2.26 times higher than the one of 12 hrs. irradiation 3. Langmuir model can apply to the biosorption mechanism of anionic N and P in HRABP. 4. Regarding the chlorophyll-a concentration as unit weight of sorbent, the ion selectivity coefficients for N and P are as follows : $(NH_3-N)+(NO_3-N)$ in 24 hrs. irradiation ; 44.984 $PO_4-P$ in 24 hrs. irradiation ; 24.237 $(NH_3-N)+(NO_3-N)$ in 12 hrs. irradiation ; 1432.851 $PO_4-P$ in 12 hrs. irradiation ; 599.076