The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta) |
Contreras-Pool, Patricia Yolanda
(Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY))
Peraza-Echeverria, Santy (Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY)) Ku-Gonzalez, Angela Francisca (Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigacion Cientifica de Yucatan (CICY)) Herrera-Valencia, Virginia Aurora (Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY)) |
1 | Stals, H. & Inzé, D. 2001. When plant cells decide to divide. Trends Plant Sci. 6:359-364. DOI |
2 |
Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D. & Cao, Y. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of |
3 | Tarakhovskaya, E. R., Maslov, Y. I. & Shishova, M. F. 2007. Phytohormones in algae. Russ. J. Plant Physiol. 54:163-170. DOI |
4 |
Tominaga, N., Takahata, M. & Tominaga, H. 1993. Effects of NaCl and KNO3 concentrations on the abscisic acid content of |
5 | Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J. & Eppink, M. H. M. 2013. Biorefinery of microalgae for food and fuel. Bioresour. Technol. 135:142-149. DOI |
6 |
Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S. & Goodenough, U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless |
7 |
Widjaja, A., Chien, C. -C. & Ju, Y. -H. 2009. Study of increasing lipid production from fresh water microalgae |
8 |
Yoon, S. Y., Hong, M. E., Chang, W. S. & Sim, S. J. 2015. Enhanced biodiesel production in |
9 |
Arias-Forero, D., Hayashida, G., Aranda, M., Portilla, T., García, A. & Díaz-Palma, P. 2013. Protocol for maximizing the triglycerides-enriched lipids production from |
10 |
Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z. & Tekinay, T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of |
11 | Cooksey, K. E., Guckert, J. B., Williams, S. A. & Callis, P. R. 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Methods 6:333-345. DOI |
12 |
Fan, J., Cui, Y., Wan, M., Wang, W. & Li, Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous |
13 |
Mujtaba, G., Choi, W., Lee, C. -G. & Lee, K. 2012. Lipid production by |
14 |
Yoshida, K., Igarashi, E., Mukai, M., Hirata, K. & Miyamoto, K. 2003. Induction of tolerance to oxidative stress in the green alga, |
15 |
Yoshida, K., Igarashi, E., Wakatsuki, E., Miyamoto, K. & Hirata, K. 2004. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in |
16 |
Lu, Y., Tarkowská, D., Turečková, V., Luo, T., Xin, Y., Li, J., Wang, Q., Jian, N., Strnad, M. & Xu, J. 2014. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga |
17 | Lu, Y. & Xu, J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20:273-282. DOI |
18 | Medipally, S. R., Yusoff, F. M., Banerjee, S. & Shariff, M. 2015. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed. Res. Int. 2015:519513. |
19 |
Park, W. -K., Yoo, G., Moon, M., Kim, C. W., Choi, Y. -E. & Yang, J. -W. 2013. Phytohormone supplementation significantly increases growth of |
20 | Rawat, I., Ranjith Kumar, R., Mutanda, T. & Bux, F. 2013. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103:444-467. DOI |
21 | Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. & Tredici, M. R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102:100-112. DOI |
22 | Rodriguez-Sotres, R. & Black, M. 1994. Osmotic potential and abscisic acid regulate triacylglycerol synthesis in developing wheat embryos. Planta 192:9-15. |
23 |
Herrera-Valencia, V. A., Contreras-Pool, P. Y., López-Adrián, S. J., Peraza-Echeverría, S. & Barahona-Pérez, L. F. 2011. The green microalga |
24 | Greenspan, P., Mayer, E. P. & Fowler, S. D. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100:965-973. DOI |
25 |
Guckert, J. B. & Cooksey, K. E. 1990. Triglyceride accumulation and fatty acid profile changes in |
26 |
Harris, E. H. 1989. |
27 |
Ho, S. -H., Chen, W. -M. & Chang, J. -S. 2010. |
28 |
Kobayashi, M., Hirai, N., Kurimura, Y., Ohigashi, H. & Tsuji, Y. 1997. Abscisic acid-dependent algal morphogenesis in the unicellular green alga |
29 |
Hunt, R. W., Chinnasamy, S., Bhatnagar, A. & Das, K. C. 2010. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, |
30 |
Kharenko, O. A., Zaharia, L. I., Giblin, M., Čekić, V., Taylor, D. C., Don Palmer, C., Abrams, R. C. & Loewen, M. C. 2010. Abscisic acid metabolism and lipid accumulation of a cell suspension culture of |
31 |
Li, X., Wang, M., Liao, X., Chen, H., Dai, Y. & Chen, B. 2015. Two stages of N-deficient cultivation enhance the lipid content of microalga |