Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.9.3

The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta)  

Contreras-Pool, Patricia Yolanda (Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY))
Peraza-Echeverria, Santy (Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY))
Ku-Gonzalez, Angela Francisca (Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigacion Cientifica de Yucatan (CICY))
Herrera-Valencia, Virginia Aurora (Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan (CICY))
Publication Information
ALGAE / v.31, no.3, 2016 , pp. 267-276 More about this Journal
Abstract
Microalgae are currently a very promising source of biomass and triacylglycerol (TAG) for biofuels. In a previous study, we identified Chlorella saccharophila as a suitable source of oil for biodiesel production because it showed high biomass and lipid content with an appropriate fatty acid methyl esters profile. To improve the TAG accumulation in C. saccharophila, in this study we evaluated the effect of abscisic acid (ABA) addition on cell concentration, lipid content and TAG production in this microalga. First, we evaluated the effects of four ABA concentrations (1, 4, 10, and 20 μM) added at the beginning of a single-stage cultivation strategy, and found that all concentrations tested significantly increased cell concentration and TAG content in C. saccharophila. We then evaluated the addition of 1 μM ABA during the second stage of a two-stage cultivation strategy and compared it with a nitrogen deficiency treatment (ND) and a combination of ND and ABA (ND + ABA). Although ABA alone significantly increased lipid and TAG contents compared with the control, ND showed significantly higher TAG content, and ND + ABA showed the highest TAG content. When comparing the results of both strategies, we found a superior response in terms of TAG accumulation with the addition of 1 μM ABA at the beginning of a single-stage cultivation system. This strategy is a simple and effective way to improve the TAG content in C. saccharophila and probably other microalgae as a feedstock for biodiesel production.
Keywords
abscisic acid; Chlorella saccharophila; green microalgae; lipids; phytohormone; triacylglycerol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stals, H. & Inzé, D. 2001. When plant cells decide to divide. Trends Plant Sci. 6:359-364.   DOI
2 Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D. & Cao, Y. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155:204-212.   DOI
3 Tarakhovskaya, E. R., Maslov, Y. I. & Shishova, M. F. 2007. Phytohormones in algae. Russ. J. Plant Physiol. 54:163-170.   DOI
4 Tominaga, N., Takahata, M. & Tominaga, H. 1993. Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (Chlorophyta). Hydrobiologia 267:163-168.   DOI
5 Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J. & Eppink, M. H. M. 2013. Biorefinery of microalgae for food and fuel. Bioresour. Technol. 135:142-149.   DOI
6 Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S. & Goodenough, U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8:1856-1868.   DOI
7 Widjaja, A., Chien, C. -C. & Ju, Y. -H. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40:13-20.   DOI
8 Yoon, S. Y., Hong, M. E., Chang, W. S. & Sim, S. J. 2015. Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two-stage photobioreactors. Bioprocess Biosyst. Eng. 38:1415-1421.   DOI
9 Arias-Forero, D., Hayashida, G., Aranda, M., Portilla, T., García, A. & Díaz-Palma, P. 2013. Protocol for maximizing the triglycerides-enriched lipids production from Dunaliella salina SA32007 biomass, isolated from the Salar de Atacama (Northern Chile). Adv. Biosci. Biotechnol. 4:830-839.   DOI
10 Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z. & Tekinay, T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 109:1947-1957.   DOI
11 Cooksey, K. E., Guckert, J. B., Williams, S. A. & Callis, P. R. 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Methods 6:333-345.   DOI
12 Fan, J., Cui, Y., Wan, M., Wang, W. & Li, Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels 7:17.   DOI
13 Mujtaba, G., Choi, W., Lee, C. -G. & Lee, K. 2012. Lipid production by Chlorella vulgaris after a shift from nutrientrich to nitrogen starvation conditions. Bioresour. Technol. 123:279-283.   DOI
14 Yoshida, K., Igarashi, E., Mukai, M., Hirata, K. & Miyamoto, K. 2003. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ. 26:451-457.   DOI
15 Yoshida, K., Igarashi, E., Wakatsuki, E., Miyamoto, K. & Hirata, K. 2004. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci. 167:1335-1341.   DOI
16 Lu, Y., Tarkowská, D., Turečková, V., Luo, T., Xin, Y., Li, J., Wang, Q., Jian, N., Strnad, M. & Xu, J. 2014. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J. 80:52-68.   DOI
17 Lu, Y. & Xu, J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20:273-282.   DOI
18 Medipally, S. R., Yusoff, F. M., Banerjee, S. & Shariff, M. 2015. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed. Res. Int. 2015:519513.
19 Park, W. -K., Yoo, G., Moon, M., Kim, C. W., Choi, Y. -E. & Yang, J. -W. 2013. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 171:1128-1142.   DOI
20 Rawat, I., Ranjith Kumar, R., Mutanda, T. & Bux, F. 2013. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103:444-467.   DOI
21 Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. & Tredici, M. R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102:100-112.   DOI
22 Rodriguez-Sotres, R. & Black, M. 1994. Osmotic potential and abscisic acid regulate triacylglycerol synthesis in developing wheat embryos. Planta 192:9-15.
23 Herrera-Valencia, V. A., Contreras-Pool, P. Y., López-Adrián, S. J., Peraza-Echeverría, S. & Barahona-Pérez, L. F. 2011. The green microalga Chlorella saccharophila as a suitable source of oil for biodiesel production. Curr. Microbiol. 63:151-157.   DOI
24 Greenspan, P., Mayer, E. P. & Fowler, S. D. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100:965-973.   DOI
25 Guckert, J. B. & Cooksey, K. E. 1990. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J. Phycol. 26:72-79.   DOI
26 Harris, E. H. 1989. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, CA, 780 pp.
27 Ho, S. -H., Chen, W. -M. & Chang, J. -S. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101:8725-8730.   DOI
28 Kobayashi, M., Hirai, N., Kurimura, Y., Ohigashi, H. & Tsuji, Y. 1997. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul. 22:79-85.   DOI
29 Hunt, R. W., Chinnasamy, S., Bhatnagar, A. & Das, K. C. 2010. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 162:2400-2414.   DOI
30 Kharenko, O. A., Zaharia, L. I., Giblin, M., Čekić, V., Taylor, D. C., Don Palmer, C., Abrams, R. C. & Loewen, M. C. 2010. Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tissue Organ Cult. 105:415-422.
31 Li, X., Wang, M., Liao, X., Chen, H., Dai, Y. & Chen, B. 2015. Two stages of N-deficient cultivation enhance the lipid content of microalga Scenedesmus sp. J. Am. Oil Chem. Soc. 92:503-512.   DOI