Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.9.2

Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production  

Lim, An Suk (Division of Life Science & Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Publication Information
ALGAE / v.35, no.3, 2020 , pp. 277-292 More about this Journal
Abstract
Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids beneficial to human health. A limited number of microalgae have been used for commercial omega-3 production, which necessitates the identification of new microalgae with high omega-3 contents. We explored the fatty acid composition and EPA and DHA contents of the mixotrophic dinoflagellate Gymnodinium smaydae fed with the optimal algal prey species Heterocapsa rotundata. Cells of G. smaydae were found to be rich in omega-3 fatty acids. In particular, the DHA content of G. smaydae was 21 mg g-1 dry weight, accounting for 43% of the total fatty acid content. The percentage of DHA in the total fatty acid content of G. smaydae was the highest among the reported microalgae except for Crypthecodinium cohnii. Moreover, to determine if the prey supply interval affected the growth rate of G. smaydae and its fatty acid content, three different prey supply intervals (daily, once every 2 d, and once for 4 d) were tested. Daily prey supply yielded the highest total fatty acid and DHA contents in G. smaydae. Furthermore, we successfully produced high-density G. smaydae cultures semi-continuously for 43 d with daily prey supply. During the semi-continuous cultivation period, the highest density of G. smaydae was 57,000 cells mL-1, with an average growth rate of 0.7 d-1. Taken together, the percentage of EPA and DHA in the total fatty acid content was maintained in the range of 54.2-56.9%. The results of this study support G. smaydae as a promising microalgal candidate for commercial DHA production and demonstrate that daily supply of prey can efficiently produce high-density G. smaydae cultures for more than a month.
Keywords
algae; biomass; DHA; EPA; FAME; lipid; polyunsaturated fatty acids;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Thomas, W. H. & Gibson, C. H. 1990. Effects of small-scale turbulence on microalgae. J. Appl. Phycol. 2:71-77.   DOI
2 Thompson, P. A., Guo, M. -X., Harrison, P. J. & Whyte, J. N. C. 1992. Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28:488-497.   DOI
3 Torres-Tiji, Y., Fields, F. J. & Mayfield, S. P. 2020. Microalgae as a future food source. Biotechnol. Adv. 41:107536.   DOI
4 Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128:219-240.   DOI
5 Wang, S., Chen, J., Li, Z., Wang, Y., Fu, B., Han, X. & Zheng, L. 2015. Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresour. Technol. 179:243-248.   DOI
6 Yongmanitchai, W. & Ward, O. P. 1991. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 57:419-425.   DOI
7 Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420.   DOI
8 You, J. H., Jeong, H. J., Lim, A. S., Ok, J. H. & Kang, H. C. 2020. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae. Mar. Biol. 167:64.   DOI
9 Jiang, Y., Fan, K. -W., Tsz-Yeung Wong, R. & Chen, F. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52:1196-1200.   DOI
10 Jiang, Y., Chen, F. & Liang, S. -Z. 1999. Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem. 34:633-637.   DOI
11 Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126.   DOI
12 Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., Lee, K. H., Lee, M. J., Jang, S. H., Potvin, E., Lee, S. K. & Noh, J. H. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryot. Microbiol. 61:182-203.   DOI
13 Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53.   DOI
14 Adolf, J. E., Place, A. R., Stoecker, D. K. & Harding, L. W. Jr. 2007. Modulation of polyunsaturated fatty acids in mixotrophic Karlodinium veneficum (Dinophyceae) and its prey, Storeatula major (Cryptophyceae). J. Phycol. 43:1259-1270.   DOI
15 Assuncao, J., Guedes, A. C. & Malcata, F. X. 2017. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar. Drugs 15:393.   DOI
16 Kang, N. S., Kim, E. S., Lee, J. A., Kim, K. M., Kwak, M. S., Yoon, M. & Hong, J. W. 2020. First report of the dinoflagellate genus Effrenium in the east sea of Korea: morphological, genetic, and fatty acid characteristics. Sustainability 12:3928.   DOI
17 Khan, M. I., Shin, J. H. & Kim, J. D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17:36.   DOI
18 Kim, S., Kang, Y. G., Kim, H. S., Yih, W., Coats, D. W. & Park, M. G. 2008. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol. 51:301-310.   DOI
19 Benstein, R. M., Cebi, Z., Podola, B. & Melkonian, M. 2014. Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Mar. Biotechnol. 16:621-628.   DOI
20 Berthold, D. E., de la Rosa, N., Engene, N., Jayachandran, K., Gantar, M., Laughinghouse, H. D. & Shetty, K. G. 2020. Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida. Algae 35:91-106.   DOI
21 Camacho, F. G., Rodriguez, J. G., Miron, A. S., Garcia, M. C. C., Belarbi, E. H., Chisti, Y. & Grima, E. M. 2007. Biotechnological significance of toxic marine dinoflagellates. Biotechnol. Adv. 25:176-194.   DOI
22 De Swaaf, M. E., Sijtsma, L. & Pronk, J. T. 2003. High-celldensity fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81:666-672.   DOI
23 LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580.   DOI
24 Lee, B. I., Kim, S. K., Kim, J. H., Kim, H. S., Kim, J. I., Shin, W., Rho, J. -R. & Yih, W. 2019a. Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains. Algae 34:163-175.   DOI
25 Cheirsilp, B. & Torpee, S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110:510-516.   DOI
26 Chua, E. T. & Schenk, P. M. 2017. A biorefinery for Nannochloropsis induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour. Technol. 244:1416-1424.   DOI
27 Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas-Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. & Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8:190-209.   DOI
28 Leu, S. & Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10:169-183.   DOI
29 Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125.   DOI
30 Lee, K. H., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H. & Park, S. A. 2019b. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34:237-251.   DOI
31 Li, A., Stoecker, D. K. & Adolf, J. E. 1999. Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat. Microb. Ecol. 19:163-176.   DOI
32 Li, X., Xu, H. & Wu, Q. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98:764-771.   DOI
33 Liang, Y., Sarkany, N., Cui, Y., Yesuf, J., Trushenski, J. & Blackburn, J. W. 2010. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol. 101:3623-3627.   DOI
34 Fan, K. -W., Jiang, Y., Faan, Y. -W. & Chen, F. 2007. Lipid characterization of mangrove thraustochytrid-Schizochytrium mangrovei. J. Agric. Food Chem. 55:2906-2910.   DOI
35 Dhanya, B. S., Sowmiya, G., Jeslin, J., Chamundeeswari, M. & Verma, M. L. 2020. Algal biotechnology: a sustainable route for omega-3 fatty acid production. In Alam M. A., Xu, J. -L. & Wang, Z. (Eds.) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore, pp. 125-145.
36 Doughman, S. D., Krupanidhi, S. & Sanjeevi, C. B. 2007. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr. Diabetes Rev. 3:198-203.   DOI
37 Dunstan, G. A., Volkman, J. K., Jeffrey, S. W. & Barrett, S. M. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 161:115-134.   DOI
38 Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290.   DOI
39 Ethier, S., Woisard, K., Vaughan, D. & Wen, Z. 2011. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour. Technol. 102:88-93.   DOI
40 Fajardo, A. R., Cerdan, L. E., Medina, A. R., Fernandez, F. G. A., Moreno, P. A. G. & Grima, E. M. 2007. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur. J. Lipid Sci. Technol. 109:120-126.   DOI
41 Fuentes-Grunewald, C., Bayliss, C., Fonlut, F. & Chapuli, E. 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 218:533-540.   DOI
42 Gallardo-Rodriguez, J. J., Garcia, M. D. C. C., Camacho, F. G., Miron, A. S., Belarbi, E. H. & Grima, E. M. 2007. New culture approaches for yessotoxin production from the dinoflagellate Protoceratium reticulatum. Biotechnol. Prog. 23:339-350.   DOI
43 Martins, D. A., Custodio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J. & Abu-Salah, K. M. 2013. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 11:2259-2281.   DOI
44 Lim, A. S., Jeong, H. J. & Ok, J. H. 2019a. Five Alexandrium species lacking mixotrophic ability. Algae 34:289-301.   DOI
45 Lim, A. S., Jeong, H. J., Ok, J. H., You, J. H., Kang, H. C. & Kim, S. J. 2019b. Effects of light intensity and temperature on growth and ingestion rates of the mixotrophic dinoflagellate Alexandrium pohangense. Mar. Biol. 166:98.   DOI
46 Mansour, M. P., Frampton, D. M. F., Nichols, P. D., Volkman, J. K. & Blackburn, S. I. 2005. Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual $C_{24}-C_{28}$ polyunsaturated fatty acids. J. Appl. Phycol. 17:287-300.   DOI
47 Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & da Silva, T. L. 2009. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21:199-214.   DOI
48 Mobin, S. & Alam, F. 2017. Some promising microalgal species for commercial applications: a review. Energy Procedia 110:510-517.   DOI
49 Ning, Y. & Liu, X. 2020. Enteromorpha hydrolysate as carbon source for fatty acids production of microalgae Schizochytrium sp. Energy 203:117900.   DOI
50 Onodera, K., Konishi, Y., Taguchi, T., Kiyoto, S. & Tominaga, A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar. Drugs 12:1773-1787.   DOI
51 Gunstone, F. D. 1996. Fatty acid and lipid chemistry. Blackie Academic, London, 263 pp.
52 Gallardo-Rodriguez, J. J. G., Miron, A. S., Camacho, F. G., Garcia, M. C. C., Belarbi, E. H. & Grima, E. M. 2010. Culture of dinoflagellates in a fed-batch and continuous stirredtank photobioreactors: growth, oxidative stress and toxin production. Process Biochem. 45:660-666.   DOI
53 Gallardo-Rodriguez, J., Sanchez-Miron, A., Garcia-Camacho, F., Lopez-Rosales, L., Chisti, Y. & Molina-Grima, E. 2012. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 30:1673-1684.   DOI
54 Garces, R. & Mancha, M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211:139-143.   DOI
55 Gupta, A., Barrow, C. J. & Puri, M. 2012. Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol. Adv. 30:1733-1745.   DOI
56 Jeong, H. J. & Lim, A. S. 2020. Method and system for continuous mass culture for mixotrophic dinoflagellates. Patent no. KR102064718B1. Korean Intellectual Property Office, Daejeon.
57 Holmes, M. J., Brust, A. & Lewis, R. J. 2014. Dinoflagellate toxins: an overview. In Botana, L. M. (Ed.) Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection. 3rd ed. CRC Press, Boca Raton, FL, pp. 3-38.
58 Horrocks, L. A. & Yeo, Y. K. 1999. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211-225.   DOI
59 Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537.   DOI
60 Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S. & Mishra, S. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244:1216-1226.   DOI
61 Park, W. -K., Moon, M., Shin, S. -E., Cho, J. M., Suh, W. I., Chang, Y. K. & Lee, B. 2018. Economical DHA (docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 29:71-79.   DOI
62 Patil, V., Kallqvist, T., Olsen, E., Vogt, G. & Gislerod, H. R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac. Int. 15:1-9.   DOI
63 Pleissner, D. & Eriksen, N. T. 2012. Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol. Bioeng. 109:2005-2016.   DOI
64 Rawat, I., Kumar, R. R., Mutanda, T. & Bux, F. 2013. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103:444-467.   DOI
65 Shimizu, Y. 1996. Microalgal metabolites: a new perspective. Annu. Rev. Microbiol. 50:431-465.   DOI
66 Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9:311-335.   DOI
67 Tan, C. H., Show, P. L., Chang, J. -S., Ling, T. C. & Lan, J. C. -W. 2015. Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol. Adv. 33:1219-1227.   DOI
68 Tang, E. P. Y. 1996. Why do dinoflagellates have lower growth rates? J. Phycol. 32:80-84.   DOI
69 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
70 Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130.   DOI
71 Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418.   DOI
72 Jiang, Y. & Chen, F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77:613-617.   DOI
73 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
74 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
75 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30S(Suppl. 1):S75-S88.