• 제목/요약/키워드: Alcalase

검색결과 210건 처리시간 0.03초

효소분해에 의한 참치 자숙액의 품질 및 기능성 개선 (Improvement on the Quality and Functionality of Skipjack Tuna Cooking Drip Using Commercial Enzymes)

  • 오현석;김진수;김혜숙;지성준;이재형;정인권;강경태;허민수
    • 한국식품영양과학회지
    • /
    • 제36권7호
    • /
    • pp.881-888
    • /
    • 2007
  • 참치 가공 부산물의 효율적 이용을 위한 일련의 연구로 상업적 효소 처리에 의해 맛 및 건강 기능성을 고려한 참치 자숙액 유래 조미 베이스의 제조를 시도하였고, 아울러 이의 특성에 대하여 살펴보았다. 참치 자숙액을 기질로 하여 효소의 종류(Alcalase, Flavourzyme, Neutrase 및 Protamex) 및 반응시간(30${\sim}$360분)을 달리하여 가수분해물을 제조한 다음 TCA soluble index, ACE 저해능 및 항산화능을 검토한 결과 Alcalase로 30분간 반응시키는 것이 가장 좋았고, 이때 ACE 저해능 및 항산화능은 각각 56.8% 및 3.80시간이었다. 1단 Alcalase 가수분해물로 제조한 2단 가수분해물과 이의 한외여과물은 1단 가수분해물에 비하여 ACE 저해능 및 항산화능의 개선효과가 인정되지 않았다. 또한, 1단 Alcalase 가수분해물의 경우 소화효소인 pepsin, trypsin 및 chymotrypsin 등에 의하여도 ACE 저해능 및 항산화능이 개선되거나 변화가 없었다. 이상의 결과로 미루어 보아 Alcalase로 30분 가수분해 처리한 가수분해물은 건강 기능성 조미 소스의 주원료로 사용 가능하리라 판단되었다.

탈지미강 단백질의 가수분해 및 분해물의 특성 연구 (Proteolysis of Defatted Rice Bran Using Commercial Proteases and Characterization of Its Hydrolysates)

  • 김창원;김현석;김병용;백무열
    • 산업식품공학
    • /
    • 제15권1호
    • /
    • pp.41-47
    • /
    • 2011
  • 쌀부산물인 탈지미강을 상업적으로 사용되는 8가지 protease를 최적화된 조건에서 단일 혹은 혼합 처리하여 수용성 단백질을 분리하였다. 이렇게 분리된 단백질을 Lowry, Kjeldahl 그리고 Gravimetric method 등 총 3가지 방법으로 분석을 한 결과 Protamex, Alcalase, Protease N이 가장 높은 분해율을 나타냈다. 3가지 방법에서 모두 Protamex, Alcalase, Protease N이 가장 높은 분해율을 나타내었고, Gravimetric method의 경우 다른 두 분석방법인 Lowry, Kjeldahl method에 비해 더 높은 단백질 함량을 보였다. 또한 위의 단일처리결과를 바탕으로 3가지 protease를 혼합하여 처리하였을 때 단일효소처리에 비해 상승효과가 나타나는 것을 알 수 있었는데, 이것은 protease의 경우 가수분해 할 수 있는 특정 peptide 혹은 amino acid가 있는데 각각의 protease가 분해하지 못하는 peptide 혹은 amino acid를 서로 분해해줌으로써 상승효과가 나타난 것으로 생각된다. 효소처리를 하여 얻어진 단백질의 사이즈를 알아보기 위해 SDS PAGE를 한 결과 어떠한 밴드도 형성이 되지 않았고 이는 분해된 단백질이 marker의 최소 사이즈인 15 kDa보다 작기때문인 것으로 생각된다. 따라서 일반 단백질보다 사이즈가 작은 polypeptide나 amino acid로써 분해된 것을 뜻하고 실제로 섭취하였을 때는 신체에서 생성되는 단백질 분해효소인 trypsin이나 chymotrypsin의 분해 없이도 쉽게 흡수 할 수 있을 것이라 판단된다. 또한 효소의 종류가 많을수록 총 아미노산의 함량이 높아짐으로써 식품첨가물로써 활용도가 높은 단백질가수분해물로 분해되었음을 확인할 수 있었다.

고농도 소맥 글루텐의 효소적 가수분해와 약산에 의한 전처리 효과 (Effect of Weak Acid Pretreatment on the Enzymic Hydrolysis against Wheat Gluten of High Concentration)

  • 이기영;홍영식;이철호
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1110-1116
    • /
    • 1998
  • To determine the optimum conditions for the enzymic hydrolysis against wheat gluten of high con centrations (6~14%, w/w, protein), a hydrolysis system combining weak acid pretreatment and enzymic hydrolysis was investigated. Alcalase showed the highest DH(degree of hydrolysis) of the tested proteases. After hydrolysis by alcalase, subsequently peptidases were applied for the better DH of the wheat gluten hydrolyzate. Peptidase NP2 showed the highest DH of the tested peptidases, but flavour zyme was shown for the lowest bitter taste of the resulting hydrolyzate. In order to minimize aggregation or gelling at higher initial substrate concentration during heat treatment, wheat gluten suspension was pretreated with possibly low concentrations of hydrochloric acid at 105oC for 1 hour, and then enzy matically hydrolysed with alcalase and subsequently with flavourzyme. Each required minimum concen tration of hydrochloric acid in the wheat gluten suspension of 6, 8, 10, 12, and 14%(w/w, protein) was 0.10, 0.15, 0.20, 0.225, and 0.275N, respectively. After the subsequent enzymic treatment by alcalase and peptidase NP2 for 24 hrs, the nitrogen solubility in the final wheat gluten hydrolysates was increased to 94.9, 86.4, 85.3, 89.3 and 95.0%, and their amino nitrogen content was increased to 2.87, 5.68, 7.34, 9.71 and 12.50mg/m, respectively.

  • PDF

유청단백질의 분리 및 단백질 분해 효소에 의한 유청단백질의 가수분해 양상 (Isolation of whey protein and hydrolysis pattern of whey protein by proteolytic enzyme)

  • 렌친핸드;배형철;정석근;남명수
    • 농업과학연구
    • /
    • 제39권4호
    • /
    • pp.561-568
    • /
    • 2012
  • The aim of this study was to introduce a simple method for isolation of ${\alpha}$-lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin from cow's milk, and peptides produced by enzymatic hydrolysis of ${\alpha}$-lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin with alcalase. Whey protein were precipitated from whey by ammonium sulfate and, ${\alpha}$-lactalbumin and ${\beta}$-lactoglobulin were isolated using Hi Prep 26/60 Sephacryl S-100 column gel filtration chromatography. Bovine serum albumin and ${\beta}$-lactoglobulin were isolated by Mono-Q 5/50 GL column anion exchange chromatography of the 50% Ammonium Sulfate-supernatant. Isolated whey proteins were hydrolyzed by proteolytic alcalase. Tricine SDS-PAGE and reverse-phase HPLC analyses revealed that almost hydrolyzed all the ${\alpha}$-lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin with alcalase. Molecular weight of various peptides derived from alcalase hydrolysate were small molecular weight than 3.5 kDa.

Characteristics of a Black Soybean (Glycine max L. Merrill) Protein Isolate Partially Hydrolyzed by Alcalase

  • Yoon, Ji-Ho;Jung, Dong-Chae;Lee, Eun-Hye;Kang, Yoon-Seok;Lee, Sung-Yong;Park, Sae-Rom;Yeom, Hye-Jung;Ha, Mi-Sun;Park, Sang-Kyu;Lee, Yu-Si;Ha, Sang-Do;Kim, Gun-Hee;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.488-493
    • /
    • 2009
  • A protein isolate was prepared from black soybean (Glycine max L. Merrill) that possessed higher antioxidant activity than ordinary white soy protein isolates. The isolate was partially hydrolyzed by alcalase to reduce the allergenicity of black soybean. Alcalase remarkably reduced the molecular mass of the major soybean allergens that have molecular weights of 53, 38, and 24 kDa. Hydrolytic breakdown occurred more effectively in Gly m Bd 30K than in Gly m Bd 60K or Gly m Bd 28K. Alcalase hydrolysis increased the solubility and hydrophobicity of the black soybean protein isolate. The foaming activity and stability of black soybean proteins were highly increased by the partial hydrolysis.

Casein으로부터 Alcalase에 의해 생성된 철분결합 Peptide (Iron Binding Peptides from Casein Hydrolysates Produced by Alcalase)

  • 최인욱;김기성;임상동;임신원
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.218-223
    • /
    • 1998
  • 우유 casein단백질을 alcalase로 가수분해시켰을 때, 생성되는 peptide 중 철분과 결합력이 있는 peptide인 IBP가 $immobilized\;Fe^{3+}\;affinity\;chromatography$에 의하여 용이하게 분리되었다. IBP의 분자량은 2,175 dalton이었으며 $pH\;6,\;37^{\circ}C$에서 1시간동안 일정량의 철분과 항온처리하였을 경우, 25, 50, 100 g/mL의 IBP는 각각 4.2, 5.7, 7.1 g의 철분을 가용화시키는 능력을 보였다. IBP는 proline (24.5 Mol%), lysine (15.7 Mol%), glutamic 또는 glutamine (14.9 Mol%) 등의 아미노산으로 구성되어 있었으며 이들의 N-terminal sequence는Met-Ala-Pro-Lys-His의 순으로 이루어져 있었다. 분자량, 아미산 조성, N-terminal sequence등의 결과를 종합해 보면 IBP는 casein 중 -casein의 아미노산 서열 $102{\sim}119$에 해당하는 18개의 아미노산으로 구성된 peptide임을 알 수 있었다.

  • PDF

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • 제5권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

  • Senevirathne, Mahinda;Kim, Soo-Hyun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • 제4권3호
    • /
    • pp.183-190
    • /
    • 2010
  • Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against $H_2O_2$-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against $H_2O_2$-induced cell damage in vitro.

매생이 유래 올리고당의 추출 분리 및 Angiotensin I Converting Enzyme 저해능 분석 (Analysis of Angiotensin I Converting Enzyme Inhibitory Activity of Oligosacchride Extracted from Capsosiphon fulvescens)

  • 김현우;이중헌
    • KSBB Journal
    • /
    • 제28권2호
    • /
    • pp.131-136
    • /
    • 2013
  • The hydrolysates prepared with various enzyme digestion of Capsosiphon fulvescens were used to measure the inhibitory effects against angiotensin I converting enzyme (ACE). The commercially available enzymes such as Celluclast, Viscozyme, Lysing enzyme, Flavourzyme, Alcalase and Pectinex were used to digest C. fulvescens and produce hydrolysates. The maximum ACE inhibitory activity was observed using Alcalase hydrolysis (72.9%). The optimal conditions of Alcalase extraction were pH 8.0 and extraction time for 12 hr. The hydrolysates were fractionated using preparative-LC and anion-exchange chromatography on DEAE-cellulose and the fraction B and B-2 were isolated. The ACE inhibitory activity of fraction B-2 by anion-exchange chromatography was 82.6%. The molecular weight of fraction B-2 estimated using size exclusion chromatography was about 1 kDa. The monosaccharide composition of the fraction B-2 was determined to be mannose (1.1%), glucuronic acid (1.3%), galactose (1.3%) and glucose (96.3%).