• Title/Summary/Keyword: AlN thin films

Search Result 337, Processing Time 0.025 seconds

Study on Electrical Characteristics of Metal/GaN Contact and GaN MESFET for Application of GaN Thin Film (GaN 박막의 활용을 위한 Metal/GaN 접촉과 GaN MESFET의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Kang, Ho-Cheol;Lee, Jung-Hoon;Sung, Man-Young;Park, Sung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1910-1912
    • /
    • 1999
  • This paper was described electrical characteristics of Metal/GaN contact for application of GaN thin films. The lowest contact resistivity was $1.7\times10^{-7}[\Omega-cm^2]$ at Ti/Al Structure. Mean while, GaN MESFETs have been fabricated with a 250 nm thick channel on a high resistivity GaN layer grown by GAIVBE system. For a gate-source diode reverse bias of 35 V, the gate leakage current was $120{\mu}A$. From the data, we estimate the transconductance for our GaN MESFET to be 25 mS/mm.

  • PDF

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application (N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성)

  • Kim, Kiryun;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.

Energy-band-gap Variation of InxGaN1-x Thin Films with Indium Composition (인듐량에 따른 InxGaN1-x 박막의 에너지밴드갭 변화)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.677-681
    • /
    • 2009
  • $In_xGa_{1-x}N$ alloys with 20-nm-thickness were deposited onto Mg:GaN/AlN/SiC substrates by MOCVD at $800\;^{\circ}C$. TMGa, TMIn and $NH_3$ were used as the precursor of gallium, indium and nitrogen, respectively. The mole ratio of indium in $In_xGa_{1-x}N$ films varied between 0 and 0.2. The energy-band-gaps of the films were obtained from the photoluminescence and cathodoluminescence peaks. The mole ratios of $In_xGa_{1-x}N$ films were calculated by applying Vegard's law to XRD results. The energy-band-gap versus indium composition plot for $In_xGa_{1-x}N$ alloys were well fit with a bowing parameter of 2.27.

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • Seong, Si Yeol;Hwang, Jin Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

Dielectric and Piezoelectric Properties of xPb(Al0.5Nb0.5)O3-(1-x)Pb(Zr0.52Ti0.48)O3 Thin films Prepared by PLD (PLD법으로 제작된 xPb(Al0.5Nb0.5)O3-(1-x)Pb(Zr0.52Ti0.48)O3박막의 유전 및 압전 특성)

  • 김민철;박용욱;최지원;강종윤;안병국;김현재;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.795-800
    • /
    • 2003
  • The dielectric and piezoelectric properties of the xPb(A $l_{0.5}$N $b_{0.5}$) $O_3$-(1-x)Pb(Z $r_{0.52}$ $Ti_{0.48}$) $O_3$ [xPAN-(1-x)PZT] thin films by pulsed laser deposition (PLD) were investigated as a function of PAN contents. The effect of texture on dielectric and piezoelectric properties of the 0.05PAN-0.95PZT thin films having the highest piezoelectric constant( $d_{33}$) was studied more precisely. For 0$\leq$x$\leq$0.15 compositions in xPAN-(1-x)PZT thin films, the well-developed perovskite phase with (111) preferred orientation was obtained at the deposition temperature of 50$0^{\circ}C$. With increasing PAN content, remanent polarization and coercive field decreased. The dielectric constant increased with an increase of PAN content until it reached 1450 at $\chi$= 0.05, and then decreased for higher PAN content. The maximum points of dielectric constant coincides with the maximum points of the piezoelectric constant $d_{33}$.33/.33/././.

Structure, Optical and Electrical Properties of AI-doped ZnO Thin Film Grown in Hydrogen-Incorporated Sputtering Gas

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Munir, Badrul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • Low RF power density was used for preparing transparent conducting AI-doped ZnO (AZO) thin films by RF Magnetron Sputtering on Corning 1737 glass. The dependence of films' structural, optical and electrical properties on sputtering gas, film's thickness and substrate temperature were investigated. Low percent of incorporated H2 in Ar sputtering gas has proven to reduce film's resistivity and sheet resistance as low as $4.1\times10^{-3}{\Omega}.cm$. It also formed new preferred peaks orientation of (101) and (100) which indicated that the c-axis of AZO films was parallel to the substrate. From UN-VIS-NIR Spectrophotometer analysis, it further showed high optical transmittance at about $\~ 90\%$ at visible light spectra (400-700nm).

  • PDF

Optical and mechanical properties of silicate film using a water glass (물유리를 이용한 실리카계 박막의 광학적 및 기계적 특성)

  • Lee, K.M.;Lim, Y.M.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.187-192
    • /
    • 2000
  • We prepared $SiO_2-Na_2O-R_mO_n$ thin films based on economics of water glass and investigated optical, mechanical properties of product thin films. Coating sol stabilized with 1 N HCl and 1 N $NH_4OH$, was fabricated by using water glass and calcium nitrate, and aluminum nitrate as starting materials. As-coated films on stainless steel, Si wafer and soda-lime-silica glass by spinning were finally annealed at 500, 750 and $900^{\circ}C$. Micro hardness and nitrogen content in film surface of annealed films were measured by Knoop hardness tester and EDX, respectively. Field Emission Scanning Electron Microscope (FE-SEM) and UV-VIS spectroscopy were adopted to analyze surface morphology and thickness and reflectance of our films.

  • PDF

Dry Etching Characteristics of TiN Thin Films in BCl3-Based Plasma

  • Woo, Jong-Chang;Park, Jung-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.106-109
    • /
    • 2011
  • We investigated the etching characteristics of titanium nitride (TiN) thin film in $BCl_3$/Ar inductively coupled plasma. The etching parameters were the gas mixing ratio, radio frequency (RF) power, direct current (DC)-bias voltages and process pressures. The standard conditions were as follows: total flow rate = 20 sccm, RF power = 500 W, DC-bias voltage = -100 V, substrate temperature = $40^{\circ}C$, and process pressure = 15 mTorr. The maximum etch rate of TiN thin film and the selectivity of TiN to $Al_2O_3$ thin film were 54 nm/min and 0.79. The results of X-ray photoelectron spectroscopy showed no accumulation of etch byproducts from the etched surface of TiN thin film. The TiN film etch was dominated by the chemical etching with assistance by Ar sputtering in reactive ion etching mechanism, based on the experimental results.

A study on the growth behavior of AlN single crystal according to the change of N2 in HVPE propcess (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 N2 양의 변화에 따른 AlN 단결정의 성장 거동에 관한 연구)

  • Kyung-Pil Yin;Seung-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.61-65
    • /
    • 2024
  • HVPE (Hydride vapor phase epitaxy) is a method of manufacturing thin films or single crystals using gaseous raw materials. This is a method that applies the principles of chemical vapor deposition to grow a single crystal of a material with low meltability or high melting point, and is one of the methods that can obtain a gallium nitride (GaN) single crystal. Recently, much research has been conducted to grow aluminum nitride (AlN) single crystals using this method, but good results have not yet been obtained. In this study, we attempted to grow AlN single crystals using the HVPE method. Nitrogen was used as a carrier gas in the growth process, and the growth results according to changes in the amount of nitrogen (N2) were examined. Changes in growth crystals as the amount of nitrogen increased were confirmed. The shape of the grown AlN single crystal was observed using an optical microscope, and the rocking curve was measured using double crystal X-ray diffractometry (DCXRD) to confirm the creation of the AlN crystal. The crystallinity of single crystals was also investigated.

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF