• Title/Summary/Keyword: AlN crystal

Search Result 249, Processing Time 0.021 seconds

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

CMnAl TRIP Steel Surface Modification During CGL Processing

  • Gong, Y.F.;Lee, Y.R.;Kim,, Han-S.;Cooman, B.C.De
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2010
  • The mechanisms of selective oxidation of intercritically annealed CMnAl TRIP steels in a Continuous Galvanizing Line (GCL) were studied by cross-sectional observation of the surface and sub-surface regions by means of High Resolution Transmission Electron Microscopy (HR-TEM). The selective oxidation and nitriding of an intercritically annealed CMnAl TRIP steel in a controlled dew point 10%$H_2+N_2$ atmosphere resulted in the formation of c-xMnO.$MnO_2$ (1${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) particles on the steel surface. Single crystal c-xMnO.$SiO_2$ ($2{\leq}x{\leq}4$) oxide particles were also observed on the surface. A thin film of crystalline c-xMnO.$SiO_2$ (2${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) was present between these particles. In the sub-surface region, internal oxidation, nitriding and intermetallic compound formation were observed. In the first region, large crystalline c-xMnO.$SiO_2$ ($1{\geq}x{\geq}2$) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) oxides particles were present. In the second region, c-AlN particles were observed, and in a third region, small $MnAl_x$ (x>1) intermetallic compound particles were observed.

The Growth and Characterization of GaN Films by Direct reaction of Ga and $NH_3$ (금속 갈륨과 암모니아의 직접반응에 의한 GaN 후막성장과 특성 연구)

  • Yang, Seung-Hyeon;Nam, Gi-Seok;Im, Gi-Yeong;Yang, Yeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.241-245
    • /
    • 2000
  • Thick GaN films were grown on (0001) sapphire substrates using the direct reaction gallium and ammonia. The GaN films grew dominantly along [0002] direction, but included the growth of GaN(1010) planeq with V-shaped facetted surfaces at low temperature. With increasing growth temperature, however, the growth of GaN (1010) and (1011) planes was appeared from the films, which gives rise to the growth of hexagonal crystal with pyramid-shaped surface. The growth rate of GaN films increased with increasing growth temperature, but decreased at $1270^{\circ}C$ because the GaN films began to decompose into Ga and N at the temperature. It seemed that the crystal and optical qualities of the GaN films improve with increasing $NH_3$ flow rate. From X-ray diffraction (XRD) and photoluminescence (PL) measurements, it was observed that the yellow luminescence (YL) appeared to be significant as the peak intensity of (1010) plane of XRD spectra increased.

  • PDF

Growth of O- and Zn-polar ZnO films by DC magnetron sputtering

  • Yoo, Jin-Yeop;Choi, Sung-Kuk;Jung, Soo-Hoon;Cho, Young-Ji;Lee, Sang-Tae;Kil, Gyung-Suk;Lee, Hyun-Jae;Yao, Takafumi;Chang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • O- and Zn-polar ZnO films were grown by DC magnetron sputtering. Growth of high-quality, single-crystal ZnO thin films were confirmed by XRD and pole figure analysis. O-polar ZnO was grown on an $Al_2O_3$ substrate, which was confirmed by a slow growth rate (378 nm/hr), a fast etching rate (59 nm/min), and by the hillocks on the surface after etching. Zn-polar ZnO was grown on a GaN/$Al_2O_3$ substrate, which was confirmed by a fast growth rate (550 nm/hr), a slow etching rate (28 nm/min), and by pits on the surface after etching. Results from the present study show that it is possible to use DC-sputtering to grow ZnO film with the same polarity as other epitaxial growth methods.

Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates (다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

Synthesis and Photo Luminescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor using Polymer Matrix (폴리머 매트릭스를 전구체로 사용한 SrAl2O4:Eu2+,Dy3+ 축광성 형광체의 합성 및 형광 특성)

  • Kim, Soo-Jong;Kwon, Hyuk-Sil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.671-679
    • /
    • 2007
  • [ $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ ] phosphor was synthesized using the impregnation method, and its photoluminescence and long-afterglow properties were investigated, A mixture of $Sr(NO_3)_2,\;Al(NO_3)_2\;9H_2O,\;EuCl_3\;6H_2O,\;DyCl_3\;6H_2O,\;NdCl_3\;6H_2O$ salts were dissolved in distilled water and impregnating into the polymer precursor. After drying, the impregnated mixture was heat treated at $900-1400^{\circ}C$ for 2h in a $N_2-H_2$ reduction atmosphere. The microstructure and crystal structure of the $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ powders were examined by scanning electron microscopy and X-ray diffraction, respectively. The photoluminescence spectra showed an excitation band along over wide wavelength of 250-450nm, and a broaden emission with a maxima peak at 360nm. In addition, the spectra also showed a good long after glow that decayed over a 1000sec period after 10 min excitation illumination.

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process (화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성)

  • Yoon Jong Woon;Lee Kee-Sun
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.

Liquid-Phase Sintered SiC Ceramics with Oxynitride Additives

  • Rixecker, G.;Biswas, K.;Wiedmann, I.;Sldinger, F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.1-33
    • /
    • 2000
  • Silicon carbide ceramics with sintering additives from the system AlN-Y$_2$O$_3$ can be gas-pressure sintered to theoretical density. While commonly a combination of sesquioxides is used such as Al$_2$O$_3$-Y$_2$O$_3$, the oxynitrid additives offer the advantage that only a nitrogen atmosphere is require instead of a powder. By starting form a mixture of ${\beta}$-SiC and ${\alpha}$-SiC, and by performing dedicated heat treatments after densification, anisotropic grain growth is obtained which leads to a platelet microstructure showing enhance fracture toughness. In the present work, recent improvement of the mechanical behaviour of these materials at ambient and high temperatures is reported. By means of a surface oxidation treatment in air it is possible to obtain four-point bending strengths in excess of 1 GPa, and the strength retention at high temperatures is significantly improved.

  • PDF

New fabrication of CIGS crystals growth by a HVT method (새로운 HVT 성장방법을 이용한 CIGS 결정성장)

  • Lee, Gang-Seok;Jeon, Hun-Soo;Lee, Ah-Reum;Jung, Se-Gyo;Bae, Seon-Min;Jo, Dong-Wan;Ok, Jin-Eun;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Bae, Jong-Seong;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2010
  • The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.