• Title/Summary/Keyword: AlGaN/GaN HEMTs on sapphire

Search Result 6, Processing Time 0.023 seconds

Effect of electron-beam irradiation on leakage current of AlGaN/GaN HEMTs on sapphire

  • Oh, Seung Kyu;Song, Chi Gyun;Jang, Taehoon;Kwak, Joon Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.617-621
    • /
    • 2013
  • This study examined the effect of electron-beam (E-beam) irradiation on the electrical properties of n-GaN, AlGaN and AlGN/GaN structures on sapphire substrates. E-beam irradiation resulted in a significant decrease in the gate leakage current of the n-GaN, AlGaN and HEMT structure from $4.0{\times}10^{-4}A$, $6.5{\times}10^{-5}A$, $2.7{\times}10^{-8}A$ to $7.7{\times}10^{-5}A$, $7.7{\times}10^{-6}A$, $4.7{\times}10^{-9}A$, respectively, at a drain voltage of -10V. Furthermore, we also investigated the effect of E-beam irradiation on the AlGaN surface in AlGaN/GaN heterostructure high electron mobility transistors(HEMTs). The results showed that the maximum drain current density of the AlGaN/GaN HEMTs with E-beam irradiation was greatly improved, when compared to that of the AlGaN/GaN HEMTs without E-beam irradiation. These results strongly suggest that E-beam irradiation is a promising method to reduce leakage current of AlGaN/GaN HEMTs on sapphire through the neutralization the trap.

DC and RF Characteristics of AlGaN/InGaN HEMTs Grown by Plasma-Assisted MBE (AlGaN/InGaN HEMTs의 고성능 초고주파 전류 특성)

  • 이종욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.752-758
    • /
    • 2004
  • This paper reports on the DC and RF characteristics of AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beau epitaxy(MBE) on sapphire substrates. The devices with a 0.5 ${\mu}$m gate-length exhibited relatively flat transconductance(g$\_$m/), which results from the enhanced carrier confinement of the InGaN channel. The maximum drain current was 880 mA/mm with a peak g$\_$m/ of 156 mS/mm, an f$\_$T/ of 17.3 GHz, and an f$\_$MAX/ or 28.7 GHz. In addition to promising DC and RF results, pulsed I-V and current-switching measurements showed little dispersion in the unpassivated AlGaN/InGaN HEMTs. These results suggest that the addition of In to the GaN channel improves the electron transport characteristics as well as suppressing current collapse that is related to the surface trap states.

Simulation and analysis of DC characteristics in AlGaN/GaN HEMTs on sapphire, SiC and Si substrates (Sapphire SiC, Si 기판에 따른 AlGaN/GaN HEMT의 DC 전기적 특성의 시뮬레이션과 분석)

  • Kim, Su-Jin;Kim, Dong-Ho;Kim, Jae-Moo;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.272-278
    • /
    • 2007
  • In this paper, we report on the 2D (two-dimensional) simulation result of the DC (direct current) electrical and thermal characteristics of AlGaN/GaN HEMTs (high electron mobility transistors) grown on Si substrate, in comparison with those grown on sapphire and SiC (silicon carbide) substrate, respectively. In general, the electrical properties of HEMT are affected by electron mobility and thermal conductivity, which depend on substrate material. For this reason, the substrates of GaN-based HEMT have been widely studied today. The simulation results are compared and studied by applying general Drift-Diffusion and thermal model altering temperature as 300, 400 and 500 K, respectively. With setting T=300 K and $V_{GS}$=1 V, the $I_{D,max}$ (drain saturation current) were 189 mA/mm for sapphire, 293 mA/mm for SiC, and 258 mA/mm for Si, respectively. In addition, $G_{m,max}$ (maximum transfer conductance) of sapphire, SiC, Si was 38, 50, 31 mS/mm, respectively, at T=500 K.

  • PDF

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

Scalable AlGaN/GaN HEMTGs Model Including Thermal Effect (스케일링이 가능한 AlGaN/GaN HEMT 소자의 열 모델에 관한 연구)

  • 김동기;김성호;오재응;권영우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.705-711
    • /
    • 2003
  • In this Paper, 2${\times}$100 $\mu\textrm{m}$ AlCaN/GaN HEMT's(on sapphire substrate) large signal model including thermal effect was extracted. An equation based empirical model was employed to make large signal model for convergence and high speed. Pulsed I-V measurement was performed to extract thermal resistance and capacitance. Power amplifiers with 9 mm and 15 mm AlCaN/GaN HEMTS were designed using scaled modeling results of 2${\times}$100 $\mu\textrm{m}$ device respectively. From comparisons between measured and simulated data, the model considering of thermal effects gave better agreement than without one. It demonstrates that thermal modeling must be performed for power amplifier that uses large size transistors.

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF